Physics, asked by Anonymous, 2 months ago

A smooth circular tube of radius R is fixed in a vertical plane. A particle is projected from its lowest point with a velocity just sufficient to carry it to the highest point. Show that the time taken by the particle to reach the end of the horizontal diameter is \sqrt{ \dfrac{R}{g} }  \: ln \: (1 +  \sqrt{2} ).​

Answers

Answered by AbhinavRocks10
8

S O L U T I O N

Given:

Given:Velocity of particle at starting point is adequate just to reach the top . Radius of track is given as

  • R

To show :

Time taken to reach a position of horizontal diameter is :

 \bf t = \sqrt{ \dfrac{R}{g} } \{ log(1 + \sqrt{2} ) \}

Assumption :

\bf\int \: \sec( \theta) d \theta = \log \{\sec( \theta) + \tan( \theta) \}

Calculation:

  • First of all we will calculate the velocity at bottom necessary to reach the top . Let the velocity be v , such that all the Kinetic energy will be converted to Potential energy at top.

\bf\frac{1}{2} m {v}^{2} = mg(2R)

\bf v = \sqrt{4gR}

Now , let's consider a position on the track such that it is angle of θ with vertical.

So change in height will be :

\bf R - R \cos( \theta)R−Rcos(θ)

\bf= R \{1 - \cos( \theta) \}=R{1−cos(θ)}

  • Let Velocity be V2 at that height.

  • Applying Conservation of Mechanical energy :

⇝ \bf\frac{1}{2} m {v}^{2} = \frac{1}{2} m {(v2)}^{2} + mgR \{1 - \cos( \theta) \}

\bf⇝  {v}^{2} = {(v2)}^{2} + 2gR \{1 - \cos( \theta) \}

\bf ⇝  4gR = {(v2)}^{2} + 2gR \{1 - \cos( \theta)

\bf⇝  ( {v2)}^{2} = 2gR \{1 + \cos( \theta) \}

\bf ⇝  v2 = \sqrt{2gR \{1 + \cos( \theta) \}}

\bf ⇝  v2 = 2 \cos( \dfrac{ \theta}{2} ) \sqrt{gR}

Now , let's consider movement of a small distance on the track (dx) in time (dt)

So, we can say that :

\bf⇝ dx = (v2) \: dtdx=(v2)dt

  • Integrating on both sides :

\bf⇝ \int \: dx = \int \: (v2)

The small distance can be written in form of angle and radius :

\bf⇝  \int \:R \: d \theta = \int \: (v2)

\bf⇝  \int \:R \: d \theta = \int \: \{2 \cos( \frac{ \theta}{2} ) \sqrt{gR} \}

\sf\displaystyle ⇝  \int \: dt = \frac{1}{2} \sqrt{ \frac{R}{g} } \int \: \sec( \frac{ \theta}{2} ) d \theta

Putting the limits :

\displaystyle ⇝ \bf \int_{0}^{t} \: dt = \frac{1}{2} \sqrt{ \frac{R}{g} } \int_{0}^{ \frac{\pi}{2}} \: \sec( \frac{ \theta}{2} ) d \theta

\displaystyle ⇝ \bf t = \frac{1}{2} \sqrt{ \frac{R}{g} } \: \bigg \{\dfrac{ \log \{\sec( \frac{ \theta}{2} ) + \tan( \frac{ \theta}{2} ) \}}{ \frac{1}{2} } \bigg \}

Putting the limits we get :

\bf⇝  t = \sqrt{ \dfrac{R}{g} } \{ log(1 + \sqrt{2} ) \}

Similar questions