A solid brass sphere of radius 2.1 dm is converted into a right circular rod to length 7cm . the ratio of total surface areas of the rod to the sphere is
Answers
Answered by
1
Solution :-
A sphere is converted (I think the sphere is melted and recast) into a right circular cylindrical rod of length 7 cm. The volume of the sphere and the cylindrical rod will be equal.
Volume of sphere = 4/3πr³
Radius of sphere = 2.1 dm or 21 cm
⇒ 4/3*22/7*21*21*21
Volume of sphere = 38808 cm³
Volume of sphere = Volume of cylindrical rod
⇒ 38808 = πr²h
⇒ 38808 = 22/7*r²*7
⇒ 22r² = 38808
⇒ r² = 38808/22
⇒ r² = 1764
⇒ r = √1764
⇒ r = 42 cm
So, radius of the cylindrical rod is 42 cm.
Total surface area of the sphere = 4πr²
⇒ 4*22/7*21*21
⇒ 5544 cm²
Total surface area of sphere is 5544 cm²
Total surface area of cylindrical rod = 2πr(r + h)
⇒ 2*22/7*42*(42 + 7)
⇒ 12936 cm²
So, total surface area of cylindrical rod is 12936 cm²
Now, Ratio of the total surface areas of cylindrical rod to the sphere
= 12936 : 5544
12936 = 2*2*2*3*7*7*11
5544 = 2*2*2*3*3*7*11
Common Factors = 2*2*2*3*7*11
HCF = 1848
HCF of 12936 and 5544 is 1848
⇒ 12936/1848 : 5544/1848
⇒ 7 : 3
So, the ratio of total surface areas of the cylindrical rod to the sphere is 7 : 3
Answer.
A sphere is converted (I think the sphere is melted and recast) into a right circular cylindrical rod of length 7 cm. The volume of the sphere and the cylindrical rod will be equal.
Volume of sphere = 4/3πr³
Radius of sphere = 2.1 dm or 21 cm
⇒ 4/3*22/7*21*21*21
Volume of sphere = 38808 cm³
Volume of sphere = Volume of cylindrical rod
⇒ 38808 = πr²h
⇒ 38808 = 22/7*r²*7
⇒ 22r² = 38808
⇒ r² = 38808/22
⇒ r² = 1764
⇒ r = √1764
⇒ r = 42 cm
So, radius of the cylindrical rod is 42 cm.
Total surface area of the sphere = 4πr²
⇒ 4*22/7*21*21
⇒ 5544 cm²
Total surface area of sphere is 5544 cm²
Total surface area of cylindrical rod = 2πr(r + h)
⇒ 2*22/7*42*(42 + 7)
⇒ 12936 cm²
So, total surface area of cylindrical rod is 12936 cm²
Now, Ratio of the total surface areas of cylindrical rod to the sphere
= 12936 : 5544
12936 = 2*2*2*3*7*7*11
5544 = 2*2*2*3*3*7*11
Common Factors = 2*2*2*3*7*11
HCF = 1848
HCF of 12936 and 5544 is 1848
⇒ 12936/1848 : 5544/1848
⇒ 7 : 3
So, the ratio of total surface areas of the cylindrical rod to the sphere is 7 : 3
Answer.
Similar questions