A solid cone of lead with radius 2 cm and height 6 cm is melted and cast into
a right circular cylinder of height 2 cm. Find the radius of the base of the cylinder.
Answers
Answer:
80π cm2
Step-by-step explanation:
For cylinder, radius (r1) = 8 cm, height (h1) = 2 cm For cone, radius (r2) = ?, height (h2) = 6 cm Now, Volume of cone = Volume of cylinder
⇒ 13πr22h2=πr21h113πr22h2=πr12h1
⇒ 13πr22×6=π×8×8×213πr22×6=π×8×8×2
⇒ r22=π×8×8×2×3π×6=64r22=π×8×8×2×3π×6=64 ⇒ r2 = 8 cm
Curved surface of cone = πr2l
= πr2h22+r22−−√πr2h22+r22
= π x 8 x 36×64
−√=(π×8×10)36×64
=(π×8×10)cm2
= 80π cm2.
Answer:
Step-by-step explanation:
(b) 80π cm2
For cylinder,
radius (r1) = 8 cm,
height (h1) = 2 cm
For cone,
radius (r2) = ?,
height (h2) = 6 cm
Now, Volume of cone =
Volume of cylinder ⇒ 13πr22h2=πr21h113πr22h2=πr12h1 ⇒ 13πr22×6=π×8×8×213πr22×6=π×8×8×2 ⇒ r22=π×8×8×2×3π×6=64r22=π×8×8×2×3π×6=64 ⇒ r2 = 8 cm Curved surface of cone = πr2l = πr2h22+r22−−−−−−√πr2h22+r22 = π x 8 x 36×64−−−−−−√=(π×8×10)36×64=(π×8×10)cm2 = 80π cm2.