A solid consisting of a cylinder with a one cone at a hemisphere at the other end . The total length of solid 20cm and the common diameter is 7cm if the cylindercal portion has height 4.5cm find the total surface area of solid.
Answers
Given :-
A solid consisting of a cylinder with a cone at one end and a hemisphere at the other end .
total length of solid = 20 cm
diameter of solid = 7 cm or radius = 7/2 cm
height of cylindrical portion = 4.5 cm
To find :-
the total surface area of solid
Solution :-
total surface area of Solid = CSA of cone + CSA of cylinder + CSA of hemisphere
or
total surface area of Solid = πrl + 2πrh + 2πr²
for finding CSA of cone we need the value of l (slant height)
here we have the value of r (radius) i.e 7/2 cm or 3.5 cm
h (height of cone) = total height of solid - height of cylinder - radius of hemisphere
now we have the value of height of cone .
now we have the value of l (slant height) also .
then total surface area of Solid :-
therefore total surface area of Solid = 313.5 cm²
additional information :-
CONE :-
- CSA of cone = πrl
- TSA of cone = πr(r + l)
- volume of cone = 1/3 πr²h
CYLINDER :-
- CSA of cylinder = 2πrh
- TSA of cylinder = 2πr (r + h)
- volume of cylinder = πr²h
HEMISPHERE :-
- CSA of hemisphere = 2πr²
- TSA of hemisphere = 3πr²
- volume of hemisphere = 2/3 πr³
.