Math, asked by ojaswanichauhan234, 8 months ago

A solid consisting of a right circular cone standing on a hemisphere, is placed upright in a right circular cylinder full of water and touches the bottom. Find the volume of water left in the cylinder, given that the radius of the cylinder is 3 cm. and its height is 6cm. The radius of the hemisphere is 2 cm. What will be the diagram for this question?​

Answers

Answered by Anonymous
76

Step-by-step explanation:

\huge\mathfrak\green{\bold{\underline{☘{ ℘ɧεŋσɱεŋศɭ}☘}}}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-solve and verify the equation

 \frac{1}{3} x - 4 = x - ( \frac{1}{2} + \frac{x}{ 3} )

\huge\tt\underline\blue{Answer }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

══════════XXX═════════════

⟹</p><p> \frac{1}{3} x - 4 = x  - ( \frac{1}{2}  +  \frac{x}{3} )

⟹</p><p> \frac{x}{3}  - 4 = x - ( \frac{3 + 2x}{6} )

⟹</p><p> \frac{x - 12}{3}  = x - ( \frac{2x + 3}{6} )

⟹</p><p> \frac{x - 12}{3}  = x -  \frac{2x - 3}{6}

⟹</p><p> \frac{x - 12}{3}  =  \frac{6x - 2x - 3}{6}

⟹</p><p> \frac{x - 12}{3}  =  \frac{4x - 3}{6}

cancelling 6( R.H.S) By 3 From L.H.S

⟹ \frac{x - 12}{1}  =  \frac{4x  - 3}{2} </p><p>

⟹</p><p>2(x - 12) = 4x - 3

⟹</p><p>2x - 24 = 4x - 3

⟹</p><p> - 24 + 3 = 4x - 2x

⟹</p><p> - 21 = 2x

⟹</p><p>x =  -  \frac{21}{2}

CHECK:-

⟹ \frac{  - \frac{21}{2} }{3}  - 4 =   - \frac{21}{2}  - ( \frac{1}{2}  + ( - ) \frac{ \frac{21}{2} }{3} )</p><p>

⟹</p><p> -  \frac{21}{6}  - 4 =  -  \frac{21}{2}  - ( \frac{1}{2}  -  \frac{21}{6} )

⟹</p><p>  - \frac{7}{2}  - 4 =   - \frac{21}{2} - ( \frac{1}{2}   -  \frac{7}{2} )

⟹</p><p> \frac{ - 7 - 8}{2}  = -   \frac{21}{2}  - ( -  \frac{6}{2} )

⟹ -  \frac{15}{2}  =  -  \frac{21}{2} - ( - 3) </p><p>

⟹</p><p>  - \frac{15}{2}  =  -  \frac{21}{2}  + 3

⟹</p><p> -  \frac{15}{2}  =  \frac{ - 21 + 6}{2}  =  -  \frac{15}{2}

THEREFORE,L.H.S=R.H.S

VERIFIED✔️

══════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by guptavishrut
0

Answer:

Step-by-step explanation:

Radius of the cylinder= 3cm and its height =6 cm.

The Volume of water in the cylinder, when full

=[π×(3)²×6] cm³

=[π×9×6] cm³

=54π cm³

The Volume of the solid consisting of cone and hemisphere

= (Volume of the hemisphere) + (Volume of the cone)

=[(2/3)π×(2)³+(1/3)π×(2)²×4] cm³

=32π/3 cm³

The volume of water displaced from cylinde=Volume of solid consisting of cone and hemisphere

32π/3 cm³

The volume of water left in the cylinder after placing the solid into it

(54π-32π/3) cm³

=(130π/3) cm³

=(130/3×22/7) cm³

=136.19 cm³

=136 cm³

PLS MARK ME AS BRAINLIEST IF YOU LIKED THE EXPLANATION OF THE ANSWER AND IF IT IS CORRECT

Attachments:
Similar questions