Math, asked by afshanumair82, 6 months ago


A solid consists of a cone and a hemisphere which share a common base. The cone has
height of 6cm and base radius 4cm. Find volume and total surface area​

Answers

Answered by Anonymous
13

Given :-

  • Height of cone = 6cm

  • Radius of cone and hemisphere = 4cm

To Find :-

  • The volume and total surface area of Solid.

Formulae used:-

  • Volume of cone = ⅓πr²h

  • Volume of hemisphere = 2/3πr³

  • Curved surface area of Cone = πrl

  • Curved surface area of hemisphere = 2πr²

How to solve ?

  • First we have to find the seperate volume of cone and hemisphere. then we have to add both of them to find the Volume solid

  • Proceed same to find the Total surface area of solid but we have to find CSA of both the shape

Now,

→ Volume of cone = ⅓πr²h

→ ⅓ × 22/7 × 4 × 4 × 6

→ 22/7 × 4 × 4 × 2

→ 704/7

→ 100.57cm³

Now,

→ Volume of hemisphere = 2/3πr³

→ 2/3 × 22/7 × 4 × 4 × 4

→ 2816/21

→ 134.09cm³

Therefore,

Volume of solids = 100.57 + 134.09

Volume of solid = 234.66cm³

Now,

→ We have to find the slant height

→ using Pythogoras thereom

→ r² + h² = l²

→ (4)² + (6)² = l²

→ 16 + 36 = l²

→ 52 = l²

→ l = 7.21cm

Therefore,

→ C. S. A of cone = πrl

→ 22/7 × 4 × 7.21

→ 90.65cm²

Now,

→ C. S. A of hemisphere = 2πr²

→ 2 × 3.14 × 4 × 4

→ 100.48cm²

Therefore,

T. S. A of shape = 100.48 + 90.65

T. S . A of shape = 191.13cm²

Hence, The Total surface area of solid is 191.13cm²


Anonymous: Nice as always
Anonymous: Thanks !
Anonymous: nice ☺️❤️
Anonymous: Thanks :)
Anonymous: :)
Answered by mathdude500
6

 \large\underline\blue{\bold{Given \:  Question :-  }}

  • A solid consists of a cone and a hemisphere which share a common base. The cone has height of 6cm and base radius 4cm. Find volume and total surface area.

─━─━─━─━─━─━─━─━─━─━─━─━─━

\huge \orange{AηsωeR} ✍

 \large\underline\blue{\bold{Given  :-  }}

  • A solid consists of a cone and a hemisphere which share a common base.
  • The cone has height of 6cm and base radius 4cm.

 \large\underline\blue{\bold{To \:  Find :-  }}

  • Volume of solid
  • Total Surface area of solid

─━─━─━─━─━─━─━─━─━─━─━─━─━

 \large\underline\blue{\bold{Formula  \: used :-  }}

{{ \boxed{\large{\bold\green{Surface Area_{(Cone)}\: = \:\pi rl}}}}}

{{ \boxed{\large{\bold\green{Surface Area_{(hemisphere)}\: = \:2\pi r^2}}}}}

{{ \boxed{\large{\bold\green{Volume_{(cone)}\: = \dfrac{1}{3} \:\pi r^2h}}}}}

{{ \boxed{\large{\bold\green{Volume_{(hemisphere)}\: = \dfrac{2}{3} \:\pi r^3}}}}}

where,

  • r = radius of cone
  • h = height of cone
  • l = slant height of cone

─━─━─━─━─━─━─━─━─━─━─━─━─━

 \large\underline\blue{\bold{Solution:-  }}

\bf \:\large \red{AηsωeR : 1.} ✍

Radius of cone, r = 4 cm

Radius of hemisphere, r = 4 cm

Height of cone, h = 6 cm

So,

\bf \:Volume_{(solid)} = Volume_{(cone)} + Volume_{(hemisphere)}

\sf \:  ⟼Volume_{(solid)}  = \dfrac{1}{3} \pi \:  {r}^{2} h + \dfrac{2}{3} \pi \:  {r}^{3}

\sf \:  ⟼Volume_{(solid)}  = \dfrac{1}{3} \pi \:  {r}^{2} (h + 2r)

\sf \:  ⟼Volume_{(solid)}  = \dfrac{1}{3}  \times \dfrac{22}{7} \times  {4}^{2}   \times (6 + 2 \times 4)

\sf \:  ⟼Volume_{(solid)}  = \dfrac{1}{3}  \times \dfrac{22}{7}   \times 16\times 14

\sf \:  ⟼Volume_{(solid)}  = \dfrac{704}{3}   \: {cm}^{3}

─━─━─━─━─━─━─━─━─━─━─━─━─━

\bf \:\large \red{AηsωeR : 2.} ✍

☆Radius of cone, r = 4 cm

☆Radius of hemisphere, r = 4 cm

☆Height of cone, h = 6 cm

▪︎Slant height of cone, is given by

\sf \:  ⟼ {l}^{2}  =  {r}^{2}  +  {h}^{2}

\sf \:  ⟼ {l}^{2}  =  {4}^{2}  +  {6}^{2}

\sf \:  ⟼ {l}^{2}  = 16 + 36

\sf \:  ⟼ {l}^{2}  = 52

\sf \:  ⟼ l=  \sqrt{52}  =  \sqrt{2 \times 2 \times 13}  = 2 \sqrt{13}   \: cm

\sf \:Surface Area_{(solid)}  = Surface Area_{(cone)}  + Surface Area_{(hemisphere)}

\sf \:  ⟼Surface Area_{(solid)}  = \pi \: rl + 2\pi \:  {r}^{2}

\sf \:  ⟼Surface Area_{(solid)}  = \pi \: r(l + 2r)

\sf \:  ⟼Surface Area_{(solid)}  = \dfrac{22}{7}  \times 4 \times (2 \sqrt{13}  + 2 \times 4)

\sf \:  ⟼Surface Area_{(solid)}  =  \dfrac{88}{7}  \times 2 \times ( \sqrt{13}  + 4)

\sf \:  ⟼Surface Area_{(solid)}  = \dfrac{176}{7} (3.605 + 4)

\sf \:  ⟼Surface Area_{(solid)}  = \dfrac{176}{7}  \times 7.605

\sf \:  ⟼Surface Area_{(solid)}  = 191.21 \:  {cm}^{2}

─━─━─━─━─━─━─━─━─━─━─━─━─━

\large \red{\bf \:  ⟼ Explore \:  more } ✍

More information :-

Perimeter of rectangle = 2(length× breadth)

Diagonal of rectangle = √(length²+breadth²)

Area of square = side²

Perimeter of square = 4× side

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²


Anonymous: brilliant! ☺️
mathdude500: Thank you so much for your appreciation
Anonymous: :) your welcome!
mathdude500: :) My pleasure
Anonymous: (:
Similar questions