French, asked by hayeeee1, 4 months ago

A solid cube of side 12 cm is cut into eight cubes of
equal volume. What will be the side of the new cube?
Also, find the ratio between their surface areas.​

Answers

Answered by Fαírү
16

☯ Let's consider side of new cube be a cm.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

Solid cube of side 12 cm is divided into 8 cubes of equal volume.

⠀⠀⠀

Therefore,

:\implies\sf Volume\:of\:big\:cube = 8 \times Volume\:of\:small\:cube\\ \\

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

⋆ Volume of cube is given by,

\star\;{\boxed{\sf{\pink{Volume_{\;(cube)} = (side)^3}}}}\\ \\

\sf Here \begin{cases} & \sf{Side\:of\:big\:cube = \bf{12\:cm}}  \\ & \sf{Side\:of\:small\:cube = \bf{a\:cm}}  \end{cases}\\ \\

\dag\;{\underline{\frak{Now,\:Putting\:values,}}}\\ \\

:\implies\sf (12)^3 = 8 \times (a)^3\\ \\ \\ :\implies\sf 12 \times 12 \times 12 = 8 \times (a)^3\\ \\ \\ :\implies\sf \dfrac{1}{ \cancel{8}} \times \cancel{12} \times 12 \times 12 = a^3\\ \\ \\ :\implies\sf \dfrac{1}{\cancel{4}} \times 6 \times \cancel{12} \times 12 = a^3\\ \\ \\ :\implies\sf \dfrac{1}{ \cancel{2}} \times 6 \times 6 \times \cancel{12} = a^3\\ \\ \\ :\implies\sf 6\times 6 \times 6 = a^3\\ \\ \\ :\implies\sf a^3 = (6)^3\\ \\ \\ :\implies\sf \sqrt[3]{a^3} = \sqrt[3]{6^3}\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{a = 6}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Side\:of\:small\:or\:new\:cubes\:is\: {\textbf{\textsf{6\:cm}}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{Finding\:ratio\:of\:their\:surface\:areas,}}}\\ \\

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

⋆ Surface area of cube is given by,

\star\;{\boxed{\sf{\pink{TSA_{\;(cube)} = 6 \times (side)^2}}}}\\ \\

Therefore,

:\implies\sf \dfrac{Surface\:area_{\:(big\:cube)}}{Surface\:area_{\:(small\:cube)}}\\ \\ \\ :\implies\sf \dfrac{6 \times (12)^2}{6 \times (6)^2}\\ \\ \\ :\implies\sf \dfrac{\cancel{6 \times 12 \times 12}}{\cancel{6 \times 6 \times 6}}\\ \\ \\ :\implies\sf \dfrac{4}{1}\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{4:1}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Thus,\:the\:ratio\:their\:surface\:area\:is\: {\textbf{\textsf{4:1}}}.}}}

Answered by BabitaGariya
0

Answer:

To this is ur answer...

please mark as brainliest if u think so

Attachments:
Similar questions