a solid cylinder has a total surface area of 213cm^2 its curved surface area is 2/3 of the total surface area find the volume of the cylinder
Answers
Answer:
Step-by-step explanation:Answer:
Step-by-step explanation:
GIVEN :
T.S.A of cylinder = 213cm²
C.S.A of cylinder = 2/3 of 213
TO FIND :
volume of the cylinder
SOLUTION :
T.S.A of a cylinder = 2πr (h+r) sq.units
T.S.A =C.S.A + area of the top and bottom
213 = 2\3 x 213 + [2( πr² )]
213 = 142 + [2 x 22/7 x r²]
213 - 142 = 44/7 x r²
71 = 44/7 x r²
71 ÷ 44/7 = r²
71 x 7/44 = r²
11.29 = r²
√11.29 = r
3.36 cm = radius
T.S.A = 2πr (h+r)
213 = 2 x 22/7 x 3.36 (h + 3.36)
213 = 21.12 x ( h + r)
213 ÷ 21.12 = h + r
10.05 = h + 3.36
10.05 - 3.36 = h
6.72 = height
VOLUME = πr²h cubic units
= 22/7 x (3.36)² x 6.72
VOLUME = 238.43 cm³
HOPE SO THIS MUST BE THE ANSWER....
Answer:
238.43 cm³
Step-by-step explanation:Answer:
Step-by-step explanation:
GIVEN :
T.S.A of cylinder = 213cm²
C.S.A of cylinder = 2/3 of 213
TO FIND :
volume of the cylinder
SOLUTION :
T.S.A of a cylinder = 2πr (h+r) sq.units
T.S.A =C.S.A + area of the top and bottom
213 = 2\3 x 213 + [2( πr² )]
213 = 142 + [2 x 22/7 x r²]
213 - 142 = 44/7 x r²
71 = 44/7 x r²
71 ÷ 44/7 = r²
71 x 7/44 = r²
11.29 = r²
√11.29 = r
3.36 cm = radius
T.S.A = 2πr (h+r)
213 = 2 x 22/7 x 3.36 (h + 3.36)
213 = 21.12 x ( h + r)
213 ÷ 21.12 = h + r
10.05 = h + 3.36
10.05 - 3.36 = h
6.72 = height
VOLUME = πr²h cubic units
= 22/7 x (3.36)² x 6.72
VOLUME = 238.43 cm³
HOPE SO THIS MUST BE THE ANSWER...