Math, asked by Mister360, 4 months ago

- A solid cylinder has a total surface area of 462 sq. cm. Its curved surface area is one-third of its total surface area. Find the volume of the cylinder.

Answers

Answered by BrainlyRish
11

Given : A solid cylinder has a total surface area of 462 sq. cm and It's curved surface area is one-third of its total surface area .

Need To Find : Volume of Cylinder.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's consider the Radius of Cylinder be r and height of Cylinder be h .

\frak{\underline { As,\:We\:know\:that\::}}\\

⠀⠀⠀⠀⠀ \red {\underline {\sf{ Total \:Surface\:Area _{(Cylinder)} = 2 \times \pi \times Radius ( Height + Radius) \:sq.\:units .}}}\\

⠀⠀⠀⠀⠀ \red {\underline {\sf{ Curved \:Surface\:Area _{(Cylinder)} = 2 \times \pi \times Radius \times Height  \:sq.\:units .}}}\\

Given that :

⠀⠀⠀⠀⠀ It's curved surface area is one-third of its total surface area .

Then :

⠀⠀⠀⠀⠀ \pink {\underline {\sf{ Curved \:Surface\:Area _{(Cylinder)} = \dfrac{1}{3} (Total \:Surface\;Area_{(Cylinder)}).}}}\\

Or ,

⠀⠀⠀⠀⠀ \pink {\underline {\sf{   2 \times \pi \times Radius \times Height =  \dfrac{1}{3}\big( 2 \times \pi \times Radius ( Height + Radius)\big)}}}\\

⠀⠀⠀⠀⠀⠀\underline {\sf{\bf{\star\:Now \: By \: Substituting \: the \: Assumed \: Values \::}}}\\

⠀⠀⠀⠀⠀ :\implies {\sf{= ( 2 \times \pi \times r \times h)=\dfrac{1}{3}\big( 2 \times \pi \times r ( h + r) \big)  }}\\

⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{3 \times 2 \times \pi \times r \times h  = 2 \times \pi \times r ( h + r) }}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{6 \times \pi \times r \times h  = 2 \times \pi \times r (h + r )  }}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{6 \times \pi \times r \times h  = 2 \times \pi \times r (h + r) }}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{6 \times \pi \times r \times h  = 2 \times \pi\times r\times h + 2\times \pi \times  r^{2} }}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{6 \times \pi \times r \times h- 2 \times \pi\times r\times h   =  2\times \pi \times  r^{2} }}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{\cancel {4 } \times \pi \times r \times h   =  \cancel {2}\times \pi \times  r^{2} }}\\

⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{2  \times \cancel {\pi} \times r \times h   =  \cancel {\pi} \times  r^{2} }}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{2 \times \cancel {r}  \times h   =    \cancel {r^{2}} = \: r  }}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{2  \times h   =   \: r  }}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀ :\underline{\pink{\boxed{\sf{ r   =\: 2h  }}}}\quad \bf{\bigstar}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given That ,

  • A solid cylinder has a total surface area of 462 sq. cm.

\frak{\underline { As,\:We\:know\:that\::}}\\

  • ⠀⠀⠀ ⠀⠀⠀⠀⠀ It's curved surface area is one-third of its total surface area .

  • Curved surface area = \dfrac{1}{3} \times 462

  • Curved surface area = \dfrac{1}{\cancel {3}} \times \cancel{462}

  • Curved surface area = 154 cm²

Or ,

  • 2\times \pi\times\:r \times h = 154 cm²

  • ⠀⠀Here : :\implies {\sf{2  \times h   =   \: r  }}\\

⠀⠀⠀⠀⠀ :\implies {\sf{2  \times \dfrac{22}{7} \times 2h \times h   =  154 cm^{2} }}\\

⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{2  \times \dfrac{22}{7} \times 2h^{2}  =  154 cm^{2} }}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{ h^{2}  =  \dfrac{154\times 7 }{22 \times 2 \times 2 }  }}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{ h^{2}  =  \dfrac{\cancel {1,078}}{\cancel {88} }  }}\\

⠀⠀⠀⠀⠀ ⠀⠀⠀⠀:\implies {\sf{ h^{2}  =  \dfrac{49}{4}   }}\\

⠀⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{ h  =\sqrt { \dfrac{49}{4}}   }}\\

⠀⠀⠀⠀⠀ :\underline {\pink{\sf{\boxed{ h  =  \dfrac{7}{2} cm  }}}}\quad \bf{\bigstar}\\

As , We know that ,

⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{2  \times h   =   \: r  }}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{\cancel {2}  \times \dfrac{7}{\cancel{2}}   =   \: r  }}\\

⠀⠀⠀⠀⠀ :\underline {\pink{\sf{\boxed { r  =  7 cm   }}}}\quad \bf{\bigstar}\\

Therefore,

  • Radius of Cylinder is : {\sf{ h  = \dfrac{7}{2}\:cm   }}\\

  • Height of Cylinder is : {\sf{ h   =   \: 7\:cm  }}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

As, We know that ,

⠀⠀⠀⠀⠀ \red{\underline {\sf{ Volume _{(Cylinder)} = 2 \times \pi \times Radius^{2}\times   Height  \:cu.\:units .}}}\\

⠀⠀⠀⠀⠀⠀\underline {\sf{\bf{\star\:Now \: By \: Substituting \: the \: Found \: Values \::}}}\\

⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{Volume _{(Cylinder)}\dfrac{22}{7} \times 7^{2} \times \dfrac{7}{2}   }}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{Volume_{(Cylinder)} = \dfrac{22}{\cancel {7}} \times \cancel {7}\times 7  \times \dfrac{7}{2}   }}\\

⠀⠀⠀⠀⠀⠀⠀ :\implies {\sf{Volume_{(Cylinder)} =  \dfrac{1,078}{\cancel {2}}    }}\\

⠀⠀⠀⠀⠀ :\underline {\pink{\boxed{\sf{Volume _{(Cylinder)} =  539cm^{2}  }}}}\\

Therefore,

⠀⠀⠀⠀⠀\underline {\therefore\:{\pink{ \mathrm {  Hence \:, Volume \:of\:Cylinder \:is\:539\: cm^{2}}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by Anonymous
9

Given,

  • TSA of Cylinder = 462 sq. cm
  • CSA is One - Third Of TSA.

To Find,

  • The Volume of Cylinder.

Solution,

→ ⅓ of TSA of Cylinder = CSA of Cylinder

→ ⅓ × 462 sq. cm = CSA of Cylinder

→ 154 sq. cm = CSA of Cylinder

→ 154 sq. cm = CSA of Cylinder

TSA = Area Of Two Circles + CSA

→ 462 sq. cm - 154 sq. cm = Area Of Two Circles

→ 308 sq. cm = Area Of Two Circles

Then,

The Area Of One Circle = 154 sq. cm

Area of Circle = 154 sq. cm

→ π r² = 154 sq. cm

→ 22/7 × r² = 154 sq. cm

→ r² = 154 sq. cm × 7/22

→ r² = 49 sq. cm

r = 7cm

CSA of Cylinder = 154 sq. cm

2 π r h = 154 sq. cm

2 × 22/7 × 7cm × h = 154 sq. cm

→ 44cm × h = 154 sq. cm

→ h = 154 sq. cm /44cm

h = 7/2 cm

Required Answer,

The Volume of Cylinder = π h

22/7 × (7cm)² × 7/2cm

22/7 × 49cm² × 7/2cm

539cm³

Similar questions