Math, asked by manideep9047, 1 year ago

A solid cylinder has total surface area of 462 sq. Cm. Curved surface area is 1/3rd of its total surface area. The volume of the cylinder is:

Answers

Answered by Stylishboyyyyyyy
8

 \Large \mathfrak{ \blue{ \underline{ Question :}}} \\  \\  \sf A  \: solid  \: cylinder \:  has  \: total  \: surface \:  area  \\ \sf of \:  462  \: sq  \: cm. \: Its \:  curved  \: area \:  is \:  one \:  third  \\ \sf of  \: its  \: total  \: surface  \: area. \: Find \:  the  \: volume \\ \sf  of \:  the  \: cylinder. \\  \\  \Large \mathfrak{ \blue{ \underline{ Solution :}}} \\  \\  \textsf{We have Total Surface Area of cylinder} \\  \qquad \sf = 2πr( h + r )  \: or  \: 2πrh + 2πr^{2}  \\  \sf 2πrh + 2πr ^{2}  = 462 cm ^{2}  \qquad ...(i) \\  \\  \sf Where \\  \sf Curved \:  Surface  \: Area =  \frac{1}{3} \times  Total \:  Surface \:  Area \\ \sf \Rightarrow 2πrh =  \frac{1}{3}  × 462 \:  cm^{2}  \\\Rightarrow \sf 2πrh = 154 \:  cm^{2}  \\  \\  \sf{Substituting \:  value \:  of \:  2πrh \:  in \:  {eq}^{n}  \:  (i),} \\ \\  \Rightarrow\sf 154  \: cm^{2} + 2πr^{2}  =  462  \: cm^{2} \\ \Rightarrow \sf 2πr^{2}  = 462 - 154  \: cm^{2} = 308 \:  cm^{2} \\ \Rightarrow \sf r^{2} =  \dfrac{308}{2π} \\ \Rightarrow \sf r^{2}= 308 ×  \dfrac12 ×  \dfrac7{22} \:  cm^{2} \\ \Rightarrow \sf r^{2} = 28 ×  \dfrac12 ×  \dfrac72 \:  cm^{2} \\ \Rightarrow \sf r =  \sqrt{49}  \:  cm^{2} \\ \Rightarrow \sf r = 7  \: cm \\ \\   \sf  \underline{Substituting  \: value \:  of \:  r  \: in \:  2πrh} \\ \\  \Rightarrow \sf 2πrh = 154  \: cm^{2} \\ \Rightarrow \sf  h =  \dfrac{154}{2πr}  \\ \Rightarrow \sf h = 154 ×  \dfrac12 ×  \dfrac7{22} ×  \dfrac17  \: cm \\ \Rightarrow \sf h =  \dfrac72  \: cm \\  \\  \underline{ \sf Volume \:  of \:  cylinder  : } \\  \sf \qquad= πr^{2}h \\  \qquad \sf   =  \dfrac {22}7 × 7 \times 7 ×  \dfrac72  \\  \sf \qquad= 539  \: cm {}^{3}

Answered by Anonymous
12

{\bold{\underline{\underline{Answer:}}}}

Let the radius and height of the cylinder be r cm and h cm.

Given : Total surface area of the cylinder

= 462 cm²

∴ 2π r (r + h) = 462 cm² ...(1)

Lateral surface area of cylinder = \large\tt\dfrac{1}{3} × Total surface area of cylinder (Given)

∴ 2π rh = \large\tt\dfrac{1}{3} × 462 = 154 cm² ...(2)

Now, From (1) and (2), we have

\implies\tt{\dfrac{{2\pi\:r}(r+h)}{{2\pi\:r}}}=\dfrac{462}{154}

\implies\tt{\dfrac{\cancel{2\pi\:r}(r+h)}{\cancel{2\pi\:r}}}=\tt{\dfrac{\cancel{462}}{\cancel{154}}}

\therefore \dfrac{r+h}{h}=3

\implies 3h = r+h

\implies r = 3h-h = 2h

\rightarrow r = 2h

Now, from (2) we have

π r × r = 154 cm²

(\because \:r = 2h)

\therefore \dfrac{22}{7}r^{2}=154cm^{2}

\implies \:r^{2}={\dfrac{\cancel{154}\times7}{\cancel{22}}}cm^{2}=49cm^{2}

\implies r = 7 cm

When r = 7 cm then,

h=\dfrac{r}{2}=\dfrac{7}{2}cm

\implies \therefore Volume of Cylinder

= \pi \: r^{2}h =  \dfrac{22}{7}(7cm^{2}) \times  \dfrac{7}{2} \: cm

\longrightarrow <strong>539\:cm^{3}</strong>

Similar questions