Physics, asked by sumaiya479, 9 months ago

a solid cylinder is rolling without slipping on a plane having inclination theta and the coefficient of static friction.....​

Attachments:

Answers

Answered by nirman95
7

Given:

A solid cylinder is rolling without slipping on a plane having inclination \theta and coefficient of friction is \mu.

To find:

Relation between \theta \:and\: \mu.

Calculation:

Considering Translational Motion:

a = g \sin( \theta)  -  \mu g \cos( \theta)  \:  \:  \: ........(1)

Considering Rotational Motion:

  \therefore \:  \tau = I \times  \alpha

 =  >  \mu mg \cos( \theta)  \times r =  \dfrac{m {r}^{2} }{2}  \times  \dfrac{a}{r}

 =  > a = 2 \mu g \cos( \theta)  \:  \:  \:  \: ......(2)

Comparing eq. (1) and (2):

 \therefore \: a = g \sin( \theta)  -  \mu g \cos( \theta)

 =  >  \: 2 \mu g \cos( \theta) = g \sin( \theta)  -  \mu g \cos( \theta)

 =  >  \: 3\mu g \cos( \theta) = g \sin( \theta)

 =  >  \: 3\mu  \cos( \theta) =  \sin( \theta)

 =  >  \tan( \theta)  = 3 \mu

So, we can say that for rolling motion:

 \therefore \:  \mu \geqslant   \dfrac{ \tan( \theta) }{3}

  =  >  \:  3\mu \geqslant   \tan( \theta)

  =  >  \:  \tan( \theta)  \leqslant 3 \mu

So, final answer is:

 \boxed{ \red{ \sf{ \large{  \:  \tan( \theta)  \leqslant 3 \mu}}}}

Answered by King412
9

\huge\underline\frak{\fbox{Answer️}}

tanθ ≤ 3μs

\huge\rm\underline\purple{Explanation:-}

Torque about point O To = fR

where f=μsmgcos θ

Using To = Iα..

=====> fR= 1/MR²α. (for rolling a=Rα)

For Cylinder not to slip,

Ma Mg sinθ f,

Or 2f Mg sinθ f ,

Or 3f Mg sinθ,

Or 3μs Mg cosθ Mg sinθ.

====>. tanθ 3μs.

hope it's helpful

follow me ✌️

Similar questions