Math, asked by aryanpratap8780, 1 year ago

A solid cylinder of diameter 12 cm and height 15 cm is melted and recast into 12 toys in the shape
of a right circular cone mounted on a hemisphere. Find the total height of the toy if height of the
conical part is 3 times its radius.
(A) 9 cm
(B) 12 cm
(C) 15 cm
(D) 18 cm​

Answers

Answered by hari141020057
0

Answer:

cylinder       cone              hemissphere

r=6              r=3                r=3

h=15           h=12-3=>9

volume of cylinder =[ volume of cone +volume of hemisphere]nos. of toys

=>πx36x15=2/3xπx27 + 1/3xπx9x9x n

=>πx36x15=1/3xπ[54+81]x n

=>36x15x3=135x n

=>12=n

Answered by Anonymous
31

 \sf \large  \underline{ \underline {GIVEN:-}}

 \sf \red{•Radius  \: of \: the \: cylinder=6cm} \\

 \sf \blue{•Height \: of \: the \:  cylinder=15cm} \\

 \sf \: TO  \: FIND  \: OUT:- \\

 \sf \green{•Total \: height \: of \: the \: toy}=?? \\

 \sf \underline {SOLUTION}:- \\  \\

 \sf \: •Volume  \: of \: cylinder=( \pi r²h)</p><p> \\

 \sf  \: : \implies( \pi ×6×6×15)cm³=(540 \pi)cm³ \\  \\

 \sf \green{A}/ \orange{Q} \\

 \sf•Cylinder  \: is \: recasted  \: into \: 12 \: toys \\

 \sf \therefore Volume  \: of \: 12 \: toys=(540 \pi)cm³ \\  \\

 \sf Volume \:  of  \: 1 \: toy= {\bigg(} \frac{540 \pi}{12}   \bigg)cm³=(45 \pi)cm³ \\  \\

 \sf  •Let \: the \: radius  \: of \: the \: hemisphere  \:be \: r \: cm.</p><p></p><p> \\  \\

 \sf \: Then,the \: height  \: of \: the \: cone \: =3r  \: cm \\

 \sf \blue{Volume  \: of \: 1 \: toy}= \purple{Volume  \: of \: hemisphere }+ \red{Volume \:  of  \: cone} \\  \\

 \:  \:  \:  \:  \:  \:  \sf = \bigg( \frac{2}{3} \pi r³+ \frac{1}{3}    \pi r²×3r \bigg)cm³ \\  \\

 \sf \:  \:  \: = \bigg( \frac{5 \pi r³}{3} \bigg)cm³ \\  \\

 \sf \therefore  \frac{5 \pi r³}{3} =45 \pi \implies r³= \bigg(45× \frac{3}{5}  \bigg)=27=3³ \\  \\

 \sf \implies r=3 \\  \\

 \sf \orange{Radius  \: of  \: the  \: hemisphere }=3cm \\  \\

 \therefore  \sf  \blue {Total \: height \: of \: the \: toy}=(r+3r)cm \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =(4r)cm \\  \:  \:  \:      \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \sf=(4×3)cm \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf=12cm \\  \\

So,Option B is the correct answer

Similar questions