Physics, asked by devanshv16, 11 months ago

A solid cylinder of mass 8 kg and radius 50 cm is
rolling down a plane inclined at an angle of 30° with
the horizontal. Calculate (i) force of friction,

Answers

Answered by BrainlyConqueror0901
9

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Force\:of\:friction=}}\frac{40}{3}N}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given :}} \\   : \implies  \text{Mass(m) = 8 \: kg} \\  \\   : \implies  \text{Radius(r) = 0.5 \: m} \\  \\   : \implies  \text{Angle \: of \: inclination  = 30 \degree} \\  \\ \red{ \underline \bold{To \: Find:}} \\   : \implies  \text{Force \: of \: friction  = ? }

• According to given question :

 :  \implies  \text{Force= Mass }\times  \text{Acceleration}  \\  \\  : \implies  mg sin \theta - fr = ma -  -  -  -  - (1) \\  \\   \bold{\circ  \:  \: Torque \: about \: friction \: force} \\  :  \implies  \tau  = Iw \\  \\   \bold{\circ \:  \:  I = MOI \: of \: cylinder} \\    \bold{\circ \:  \: w = angular \: mometum \: of \: cylinder} \\  \\   : \implies r \times fr = I \times w \\  \\   : \implies \frac{r \times fr}{I}  = \frac{a}{r}  \\  \\   : \implies fr =  \frac{aI}{ {r}^{2} }  -  -  -  -  - (2) \\  \\  \bold{ \circ \:  \:  \:  \: Putting \: value \: of \: fr \: in \: (1)} \\   : \implies mg \: sin \theta -  \frac{aI}{ {r}^{2} }  = ma \\  \\    \bold{\circ  \:  \:  \:  \: MOI\: of \: cylinder =  \frac{1}{2}m {r}^{2} } \\  \\   : \implies  mg  \:sin \theta -  \frac{a \times m {r}^{2} }{2 {r}^{2} }  = a \\  \\   : \implies a =  \frac{2}{3} g \: sin \theta -  -  -  -  - (3) \\  \\   \bold{\circ  \:  \:  \:  \: putting \: value \: of \: a \: in \: (2)} \\   : \implies fr =  \frac{aI}{ {r}^{2} }  \\  \\   : \implies fr =  \frac{2g  \: sin \theta \times m {r}^{2} }{3 \times 2( {r})^{2} }  \\  \\   : \implies fr =  \frac{mg \:sin \theta}{3}  \\  \\   : \implies fr =  \frac{8 \times 10 \times sin 30 \degree}{3}  \\  \\  :  \implies  fr =  \frac{80}{3 \times 2}  \\  \\ \green{:\implies fr =  \frac{40}{3} N}

Attachments:
Answered by jatindevrajput
0

Explanation:

A solid cylinder of mass 8 kg and radius 50 cm is

rolling down a plane inclined at an angle of 30° with

the horizontal. Calculate (i) force of friction,

Similar questions