Math, asked by mehmeh, 1 month ago

A solid is in the form of a cone of vertical height h mounted on the top base of a right circular cylinder of height 1/3 h. The circumference of the base of the cone and that of the cylinder are both equal to C. If V be the volume of the solid, prove that
C = 4√(ЗπV/7h)​

Answers

Answered by mathdude500
16

Correct Statement :-

A solid is in the form of a cone of vertical height h mounted on the top base of a right circular cylinder of height 1/3 h. The circumference of the base of the cone and that of the cylinder are both equal to C. If V be the volume of the solid, prove that C = 4√(ЗπV/8h)

Solution :-

Let radius of the base of cylinder and cone be 'r' units.

Since,

It is given that

  • Circumference of base is C,

Therefore,

\rm :\longmapsto\:C = 2\pi \: r

\bf\implies \:r = \dfrac{C}{2\pi}  -  -  - (1)

Dimensions of cone,

  • Radius of cone = r

  • Height of cone = h

Thus,

\rm :\longmapsto\:Volume_{(cone)} = \dfrac{1}{3} \pi \:  {r}^{2}h -  -  - (2)

Dimensions of cylinder,

  • Radius of cylinder = r

  • Height of cylinder = h/3

Thus,

\rm :\longmapsto\:Volume_{(cylinder)} = \pi \:  {r}^{2} \dfrac{h}{3}

\rm :\longmapsto\:Volume_{(cylinder)} =\dfrac{1}{3} \pi \:  {r}^{2} h -  -  -  - (3)

Now,

  • Total volume of solid,

\rm :\longmapsto\:Volume_{(solid)} = Volume_{(cone)} + Volume_{(cylinder)}

\rm :\longmapsto\:V =\dfrac{1}{3}\pi \:  {r}^{2}h   + \dfrac{1}{3}\pi \:  {r}^{2}h

\rm :\longmapsto\:V =\dfrac{2}{3}\pi \:  {r}^{2}h

\rm :\longmapsto\:V =\dfrac{2}{3}\pi \:  {\bigg(\dfrac{C}{2\pi}\bigg) }^{2}h

\rm :\longmapsto\:3V =2 \pi \: \dfrac{ {C}^{2} }{ {4\pi}^{2} } h

\rm :\longmapsto\:3V = \: \dfrac{ {C}^{2} }{ {2\pi}} h

\rm :\longmapsto\: {C}^{2}  = \dfrac{6\pi \: V}{h}

\rm :\longmapsto\:C =  \sqrt{\dfrac{6\pi \: V}{h} }

can re written as,

\rm :\longmapsto\:C =  \sqrt{\dfrac{6\pi \: V \times 8}{h \times 8} }

\rm :\longmapsto\:C =  \sqrt{\dfrac{48\pi \: V}{8h} }

\rm :\longmapsto\:C =  4\sqrt{\dfrac{3\pi \: V}{8h} }

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

\boxed{ \sf{ \: Volume_{(cube)} = {(edge)}^{3} }}

\boxed{ \sf{ \: Volume_{(cuboid)} = lbh}}

\boxed{ \sf{ \: Volume_{(cone)} = \dfrac{1}{3} \pi \: {r}^{2} h}}

\boxed{ \sf{ \: Volume_{(cylinder)} =  \pi \: {r}^{2} h}}

\boxed{ \sf{ \: Volume_{(sphere)} = \dfrac{4}{3} \pi \: {r}^{3} }}

\boxed{ \sf{ \: Volume_{(hemi - sphere)} = \dfrac{2}{3} \pi \: {r}^{3} }}

\boxed{ \sf{ \: Volume_{(frustum)} = \dfrac{\pi \: h}{3}({r}^{2} +  {R}^{2} + rR)}}

Similar questions