a solid is in the form of a cylinder with hemispherical ends each of diameter 28 m. if the total height of solid is 56 m, find the volume of solid.
Answers
Answered by
0
[tex]\mathfrak{ \huge{Answer:-}} \\d = 28m ,\: r = \frac{d}{2} = \frac{ 28 }{2} = 14m , \: h = 56 - 28 = 28m \\ Therefore,\: total\: volume \:of \:the \:solid \\=Volume\: of \:cylinder +Volume\: of \:sphere \\=\pi {r}^{2} h + \frac{4}{3} \pi {r}^{3} \\ = \pi {r}^{2} (h + \frac{4}{3} r) \\ = \frac{22}{7} \times 14 \times 14 \times (28 + \frac{4}{3} \times 14) \\ = 22 \times 2 \times 14 \times (28 + \frac{64}{3} ) \\ = 22 \times 2 \times 14 \times ( \frac{84 + 64}{3} ) \\ = 22 \times 2 \times 14 \times\frac{148}{3} \\ = \frac{91168}{3} \\ = 30389.33 {m}^{3} \\\bold{ \large{ \boxed{ \boxed{ Volume \: of solid=30389.33 {m}^{3}} } } } [/tex]
Similar questions