Math, asked by rohitsharma4676, 4 months ago

A solid is in the shape of a cone standing on a hemisphere with both their radii being equal to its and the height of the cone is equal to its radius. Find the volume of the solid in terms of π.​

Answers

Answered by Anonymous
2

 \\  \\ \large\underline{ \underline{ \sf{ \red{given:} }}}  \\  \\

  • Radii of cone and hemisphere are same.

  • Radii is equal to the height of cone.

 \\  \\ \large\underline{ \underline{ \sf{ \red{to \: find:} }}}  \\  \\

  • Volume of the solid [ cone + hemisphere ]

 \\  \\ \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\

• Volume of solid = Volume of cone

ㅤㅤㅤㅤㅤ+ Volume of hemisphere

 \\  \\   \bigstar\boxed{ \bf \:volume \: of \: cone =  \frac{1}{3}\pi \:  {r}^{2} h  } \\

We know , height = radius = r

 \\  \\  \bigstar \boxed{ \bf \:volume \: of \: hemisphere =  \frac{2}{3} \pi \:  {r}^{3}  } \\

 \\  \\  \sf \: volume \: of \: solid =  \frac{1}{3} \pi {r}^{2} h \:  +  \frac{2}{3} \pi \:  {r}^{3}  \\  \\  \\  \sf \: volume \: of \: solid =  \frac{1}{3} \pi {r}^{2} (r) +  \frac{2}{3} \pi {r}^{3}  \\  \\   \\  \sf \: volume \: of \: solid =  \frac{1}{3} \pi {r}^{3}  +  \frac{2}{3} \pi {r}^{3}  \\  \\  \\  \sf \: volum e\: of \: solid =  \frac{\pi {r}^{3} + 2\pi {r}^{3}  }{3}  \\  \\  \\  \sf \: volume \: of \: solid =  \frac{3\pi {r}^{3} }{3}  \\  \\  \\    \underline{\boxed { \sf \:  \orange{volume \: of \: solid = \pi {r}^{3}  }}} \\  \\

Hence , volume of solid is πr³.

__________________ㅤㅤㅤ

ㅤㅤㅤㅤㅤ

More to know :-

Volume of cube = edge³

• Volume of cuboid = 2(lh+bh+lb)

• Volume of cylinder = πr²h

• Volume of sphere = (4/3)πr³

Attachments:
Similar questions