Math, asked by ItzMiles, 2 months ago

A solid is in the shape of a cone standing on a hemisphere with both their radii being equal to 1 cm and the height of the cone is equal to its radius. Find the volume of the solid in terms of  \pi .​

Answers

Answered by Híɾo
351

 {\huge {\sf {\bf {\underline {\blue {Answer}}}}}}

Given :-

  • Height of the cone = 1 cm

  • Radius of cone = 1 cm

  • Radius of hemisphere = 1 cm

To Find :-

  • The Volume of solid in terms of  {\sf \pi}

Solution :-

Calculate Volume of cone

 {\boxed {\bf {Volume~ of~ cone = \dfrac {1}{3} \pi {r}^{2} h }}}

 \rightarrow {\sf {Volume~ of~ cone = \dfrac {1}{3} \times \pi \times {1}^{2} \times 1 }}

 \rightarrow {\sf {Volume~ of~ cone = \dfrac {1}{3} \pi ~ {cm}^{3} }}

Calculate Volume of hemisphere

 {\boxed {\bf {Volume~ of~ hemisphere = \dfrac {2}{3} \pi {r}^{3}}}}

 \rightarrow {\sf {Volume~ of~ hemisphere = \dfrac {2}{3} \times \pi \times {1}^{3} }}

 \rightarrow {\sf {Volume~ of~ hemisphere = \dfrac {2}{3} \pi ~ {cm}^{3} }}

Total volume of the solid = Volume of cone + Volume of hemisphere

 \rightarrow Total volume of the solid =  {\sf \dfrac {1}{3} \pi + \dfrac {2}{3} \pi }

 \rightarrow Total volume of the solid =  {\sf \dfrac {3}{3} \pi }

 \rightarrow Total volume of the solid =  {\sf \dfrac { \cancel {3}}{ \cancel {3}} \pi }

 {\underline {\boxed {\sf {Total~ volume~ of~ the~ solid = \pi ~ {cm}^{3} }} } }

 {\underline {\sf {\purple {Hence,~ the ~ total~ volume~ of~ the~ solid~ is~ \pi ~ {cm}^{3}}}}}

Similar questions