Physics, asked by amansaundik802214, 1 month ago

A solid laser has two states at 300K and 500K. If it emits light of wavelength 7000Å, then calculate the relative population at two different temperatures and compare the result.​

Answers

Answered by ajaykasmir
0

Answer:

Answer:

Population ratio is \frac{N_{2} }{N_{1}} =5.94 \times 10^{34}N1N2=5.94×1034 .

Given:

\lambdaλ = 6000 A = 6 ×10^{-7}10−7 m

T = 300 K

To find:

Ratio of population = \frac{N_{2} }{N_{1} }N1N2 = ?

Formula used:

\frac{N_{2} }{N_{1} }N1N2 = e^{\frac{\Delta E}{kT} }ekTΔE

\Delta E = \frac{hc}{\lambda}ΔE=λhc

Solution:

Energy is given by,

\Delta E = \frac{hc}{\lambda}ΔE=λhc

\Delta E = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{6 \times 10^{-7} }ΔE=6×10−76.63×10−34×3×108

\Delta E = 3.315 \times 10^{-19}ΔE=3.315×10−19

\DeltaE = \frac{3.315 \times 10^{-19}}{1.38 \times 10^{-23} \times 300 }\DeltaE=1.38×10−23×3003.315×10−19

\DeltaE = 80.07\DeltaE=80.07

Ratio of population = 1\frac{N_{2} }{N_{1} }1N1N2 =  e^{\frac{\Delta E}{kT} }ekTΔE

\frac{N_{2} }{N_{1}} =5.94 \times 10^{34}N1N2=5.94×1034

Population ratio is \frac{N_{2} }{N_{1}} =5.94 \times 10^{34}N1N2=5.94×1034 .

Answered by divyambanker
2

Answer:

I hope this helps :)

Attachments:
Similar questions
Math, 9 months ago