Math, asked by elizabathjohnson2005, 4 days ago

A solid metal cone of base radius 5 cm and slant height 13 cm is melted and recast into cones of base radius 2.5 cm and height 4 cm . how many such small cones are made ?

Answers

Answered by mathdude500
26

\large\underline{\sf{Solution-}}

Given that,

A solid metal cone of base radius 5 cm and slant height 13 cm.

It means,

Radius of cone, r = 5 cm

Slant height of cone, l = 13 cm

Let assume that the height of cone be h cm.

So, using the relationship,

 \:  {l}^{2} = \rm \:  {r}^{2} +  {h}^{2}  \\

So, on substituting the values, we get

 \:  {13}^{2} = \rm \:  {5}^{2} +  {h}^{2}  \\

 \:  169 = \rm \:  25 +  {h}^{2}  \\

\rm \:  {h}^{2} = 169 - 25 \\

\rm \:  {h}^{2} = 144 \\

\rm \:  {h}^{2} =  {12}^{2}  \\

\rm\implies \:h \:  =  \: 12 \: cm \\

Now, Dimensions of small cone

Radius of cone, R = 2.5 cm

Height of cone, H = 4 cm

Let assume that number of small cones be n.

Now, According to statement

A solid metal cone of base radius, r = 5 cm and height, h = 12 cm is melted and recast into n small cones of base radius R = 2.5 cm and height, H = 4 cm.

Thus,

\rm \: Volume_{(Big\:cone)} \:  =  \: n \times Volume_{(small\:cone)} \\

\rm \: \dfrac{1}{3}\pi \:  {r}^{2}h \:  =  \: n \times  \dfrac{1}{3}\pi {R}^{2} H \\

\rm \: {r}^{2}h \:  =  \: n \times   {R}^{2} H \\

On substituting the values, we get

\rm \: {5}^{2} \times 12 \:  =  \: n \times   {(2.5)}^{2}  \times 4 \\

\rm\implies \:n \:  =  \: 12 \\

Thus, number of small cones = 12

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by TheAestheticBoy
21

Question :-

  • A solid metal cone of base Radius 5 cm and slant height 13 cm which is melted and recast into cones of base radius 2.5 cm and height 4 cm. How many such small cones are made ?

Answer :-

  • Number of Small Cones = 12 .

Explanation :-

  • Here, Radius of cone is given 5 cm and the Height of Cone is 13 cm . When the cone is melted, the New Radius of Cone is 2.5 cm and the New Height of Cone is 4 cm . And, we have to find the number of Cones , which will formed after melted .

In the first case :-

  • Radius of Cone is 5 cm .
  • Slant Height of Cone is 13 cm .

Using Concept :-

  • L² = R² + H²

By substituting the given values :-

 \Longrightarrow \:  \:  \sf{13{}^{2} =  {5}^{2} + H {}^{2}   } \\

 \Longrightarrow \:  \:  \sf{169 = 25 + H} \\

 \Longrightarrow \:  \:  \sf{ {H}^{2} = 169 - 25 } \\

 \Longrightarrow \:  \:  \sf{ {Height}^{2} = 144 } \\

 \Longrightarrow \:  \:  \sf{Height =  \sqrt{144} } \\

 \Longrightarrow \:  \:  \sf{Height = 12 \: cm} \\

Now, in the second case :-

  • Radius of Cone is 2.5 cm .
  • Height of Cone is 4 cm .

Using Concept :-

 \sf{Volume \: _{Big\:Cone} = n \times  Volume \: _{Small\:Cone}} \\

 \Longrightarrow \:  \:  \sf{ \frac{1}{3}  \: \pi \:  {r}^{2} \: h \:  \:  =  \:  \: n \times  \frac{1}{3} \:  \pi  \:  {r}^{2}  \: h   } \\

 \Longrightarrow \:  \:  \sf{ {r}^{2} \: h  \:  \: = \:  \:   n \times  {r}^{2} \: h  } \\

∴ By substituting the given values :-

 \Longrightarrow \:  \:  \sf{ {5}^{2} \times 12 \:  \:  = \:  \:  n \times (2.5 {}^{2}) \times 4  } \\

 \Longrightarrow \:  \:  \sf{25 \times 12 \:  \:  =  \:  \: n \times (6.25) \times 4} \\

 \Longrightarrow \:  \:  \sf{25 \times 12 \:  \:  =  \:  \: n \times 25} \\

 \Longrightarrow \:  \:  \sf{n =12} \\

Hence :-

  • Value of small cones = 12 .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions