Math, asked by MihirSantosh, 1 year ago

a solid metal cone with radius of base 12 cm and height 24 cm is melted to form solid spherical balls of diameter 6 cm each find the number of balls thus formed

Answers

Answered by princebharath1p3ym6w
49
Hope it's help you to solve
Attachments:

princebharath1p3ym6w: One minute
princebharath1p3ym6w: 88÷7×9=126
princebharath1p3ym6w: Then 3620•57÷126=29
simi301: hey plz chk ur ans.. again
Answered by wifilethbridge
55

Answer:

32

Step-by-step explanation:

Radius of cone = 12 cm

Height of cone = 24 cm

Volume of cone = \frac{1}{3} \pi r^{2} h

So, volume of given cone =  \frac{1}{3} \pi (12)^{2}\times 24

                                           =  \frac{1}{3} \pi \times 144 \times 24

                                           =  1152 \pi

Diameter of spherical ball = 6 cm

Radius = Diameter /2 = 6/2 = 3 cm

Volume of sphere = \frac{4}{3}\pi r^{3}

                              = \frac{4}{3}\pi (3)^{3}

                              = 36 \pi

Number of spherical balls can be made from cone :

= \frac{\text{Volume of cone}}{\text{volume of sphere}}

= \frac{1152 \pi}{36 \pi}

= 32

Hence the number of spherical balls can be made from cone  are 32

Similar questions