Math, asked by brohith525, 3 months ago

A solid metallic cylinder of diameter 12 cm and height 15 cm is melted and recast into toys each in the shape of a cone of radius 3 cm and height 9 cm. Find the number of toys so formed.

Answers

Answered by ShírIey
90

\frak{Given}\begin{cases}\sf{\:\:\; Diameter_{\:(cylinder)} = 12\:cm}\\\sf{\;\;\;Height_{\:(cylinder)} = 15\;cm}\\\sf{\:\:\; Radius_{\;(cone)} = 3\; cm}\\\sf{\:\;\; Height_{\:(cone)} = 9\;cm}\\\sf{\;\;\;Radius_{\: (cylinder)} = \dfrac{D}{2} = \cancel\dfrac{12}{2}=6\;cm}\end{cases}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

⠀⠀⠀⠀

\underline{\bigstar\:\textsf{Let's Head to the Question Now :}}

  • Let the number of toys formed be x.

:\implies\sf x \times Volume\;of\;conical\;toy = Volume\;of\; cylinder\\\\\\:\implies\sf x \Bigg(\dfrac{1}{3} \pi r^2 h \Bigg) = \pi r^2 h\\\\\\:\implies\sf x = \dfrac{\cancel{\pi}\; r^2 h}{1/3 \:\cancel{\pi}\; r^2 h}\\\\\\:\implies\sf  x =  \dfrac{3 r^2h}{r^2h}\\\\\\:\implies\sf x = \dfrac{\cancel{\;3}\;\times (6)^2 \times15}{3^2\times \cancel{\;9}}\\\\\\:\implies\sf x =  \dfrac{6 \times 6 \times 15}{27}\\\\\\:\implies\sf x = \cancel\dfrac{540}{27}\\\\\\:\implies{\underline{\boxed{\frak{\pink{x = 20}}}}}\;\bigstar

⠀⠀⠀⠀

\therefore{\underline{\sf{Hence, \;the\; total\;number\;of\;toys\;formed\;are\;\bf{20 }.}}}

Answered by wtfhrshu
76

Given :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • Diameter of cylinder = 12cm
  • Height of cylinder = 15cm
  • Radius of cylinder = D/2 = 12/2 = 6cm
  • Radius of cone = 3cm
  • Height of cone = 9cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Need to find :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • The number of toys formed.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⧠ Let the number of toys formed be x.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore, x × vol. of conical toys = vol. of cylinder

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies\bf{x×\cfrac{1}{3}πr^2h=πr^2h}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies\bf{x×\cfrac{1}{3}π×3×3×9=π×6×6×15}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies\bf{x=\cfrac{π×6×6×15×3}{\cfrac{π}{3}×3×3×9}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies\bf{x=20}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Hence, 20 toys are formed.

Similar questions