Math, asked by samuelsadhusundersin, 10 months ago

A solid metallic sphere of diameter 21cm is melted and recast into a number of cones,each of diameter 7cm and height 3cm.The number of cones so formed is




Answers

Answered by Anonymous
12

\sf\red{\underline{\underline{Answer:}}}

\sf{126 \ cones \ are \ formed.}

\sf\orange{Given:}

\sf{For \ sphere,}

\sf{\implies{Diameter (d)=21 \ cm}}

\sf{For \ cone,}

\sf{\implies{Diameter (D)=7 \ cm}}

\sf{\implies{Height (h)=3 \ cm}}

\sf\pink{To \ find:}

\sf{The \ number \ of \ cones \ formed.}

\sf\green{\underline{\underline{Solution:}}}

\sf{For \ sphere,}

\sf{Radius (r)=\frac{Diameter}{2}=\frac{21}{2}}

\sf{\therefore{Radius (r)=\frac{21}{2} \ cm}}

\sf{For \ cone,}

\sf{Radius (R)=\frac{Diameter}{2}=\frac{7}{2}}

\sf{\therefore{Radius (R)=\frac{7}{2} \ cm}}

\boxed{\sf{Volume \ of \ sphere=\frac{4}{3}\times\pi\times \ r^{3}}}

\boxed{\sf{Volume \ of \ cone=\frac{1}{3}\times\pi \ r^{2}\times \ h}}

\sf{\therefore{Number \ of \ cones \ formed}}

\sf{=\frac{Volume \ of \ sphere}{Volume \ of \ cone}}

\sf{=\frac{\frac{4}{3}\times\pi\times \ r^{3}}{\frac{1}{3}\times\pi\times \ R^{2}\times \ h}}

\sf{=\frac{4\times \ r^{3}}{R^{2}\times \ h}}

\sf{=\frac{4\times(\frac{21}{2})^{3}}{(\frac{7}{2})^{2}\times3}}

\sf{=\frac{21\times21\times21\times4}{2\times7\times7\times3}}

\sf{=21\times3\times2}

\sf{=21\times6}

\sf{\therefore{Number \ of \ cones \ formed=126}}

\sf\purple{\tt{\therefore{126 \ cones \ are \ formed.}}}

Similar questions