Math, asked by dylanccasey, 10 months ago

A solid oblique cone with a slant length of 17 units is placed inside an empty cylinder with a congruent base of radius 8 units and a height of 15 units. A solid oblique cone with a slant length of 17 units is inside an empty cylinder with a congruent base of radius 8 units and a height of 15 units. What is the unfilled volume inside the cylinder? 320π cubic units 597π cubic units 640π cubic units 725π cubic units asap pls

Answers

Answered by Anonymous
10

\sf\blue{Correct \ Question}

\sf{A \ solid \ oblique \ cone \ with \ a \ slant \ height}

\sf{of \ 17 \ units \ is \ placed \ inside \ an \ empty}

\sf{cylinder \ with \ a \ congruent \ base \ of \ radius \ 8 \ units}

\sf{and \ a \ height \ of \ 15 \ units. \ What \ is \ the}

\sf{unfilled \ volume \ inside \ the \ cylinder?}

____________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ unfilled \ volume \ of \ cylinder \ is}

\sf{640\pi \ cubic \ units}

\sf\orange{Given:}

\sf{For \ solid \ cone,}

\sf{\implies{Slant \ height (l)=17 \ units}}

\sf{\implies{Radius (r)=8 \ units}}

\sf{For \ empty \ cylinder,}

\sf{\implies{Height (H)=15 \ units.}}

\sf{\implies{Radius (r)=8 \ units}}

\sf\pink{To \ find:}

\sf{The \ unfilled \ volume \ inside \ the \ cylinder.}

\sf\green{\underline{\underline{Solution:}}}

\sf{For \ cone,}

\boxed{\sf{Slant \ height=\sqrt{Radius^{2}+Height^{2}}}}

\sf{On \ squaring \ both \ sides}

\sf{17^{2}=8^{2}+h^{2}}

\sf{h^{2}=289-64}

\sf{h^{2}=225}

\sf{On \ taking \ square \ root \ of \ both \ sides.}

\sf{\therefore{h=15 \ units}}

\boxed{\sf{Volume \ of \ cone=\frac{1}{3}\times\pi\times \ r^{2}\times \ h}}

\sf{\therefore{Volume \ of \ cone=\frac{1}{3}\times\pi\times \ 8^{2}\times \ 15}}

\sf{=64\times5\times\pi}

\sf{=320\pi \ cubic \ units...(1)}

\sf{For \ cylinder,}

\boxed{\sf{Volume \ of \ cylinder=\pi\times \ r^{2}\times \ h}}

\sf{\therefore{Volume \ of \ cylinder=64\times15\times\pi}}

\sf{=960\pi \ cubic \ units...(2)}

\sf{The \ unfilled \ volume \ inside \ the \ cylinder}

\sf{=Volume \ of \ cylinder \ - \ Volume \ of \ cone}

\sf{...from \ (1) \ and \ (2)}

\sf{=960\pi \ - \ 320\pi}

\sf{=640\pi}

\sf\purple{\tt{\therefore{The \ unfilled \ volume \ of \ cylinder \ is}}}

\sf\purple{\tt{640\pi \ cubic \ units}}

Answered by Anonymous
22

 \large\bf\underline{Correct \:Question:-}

A solid oblique cone with a slant length of 17 units is inside an empty cylinder with a congruent base of radius 8 units and a height of 15 units. What is the unfilled volume inside the cylinder?

Options:-

(i) 320π cubic units

(ii) 597π cubic units

(iii) 640π cubic units

(iv)725π cubic units

━━━━━━━━━━━━━━━━━

 \large\bf\underline{Given:-}

  • slent height of cone = 17 units.
  • base radius of cylinder = 8 units
  • height of cylinder = 15 units.

 \large\bf\underline {To \: find:-}

  • unfilled volume inside cylinder.

 \huge\bf\underline{Solution:-}

We know that,

  • slent height = 17 unit's

So, we need to find the height of cone.

Slent height (l) = √r²+ h²

So,

  • l² = r² + h²

Radius of cylinder = radius of cone

radius of cone = 8units

➝ 17² = 8² + height²

➝ 238 = 64 + height²

➝ 238 - 64 = height²

➝ √225 = height

➝ height = 15

So, we get the height = 15 units

Now,

  \boxed{ \bf{volume \: of \: cone \:  = \frac{1}{3} (\pi \: r {}^{2})h  }}

 \longmapsto \rm \:volume \: of \: cone \:   =  \frac{1}{3}  ( \pi  \times  {64}) \times 15 \\  \\\longmapsto \rm \:volume \: of \: cone \:   =  \cancel \dfrac{15}{3}  \pi \times 64 \\  \\ \longmapsto \rm \:volume \: of \: cone \:   = 5 \times 64  \times \pi \\  \\ \longmapsto \rm \:volume \: of \: cone \:   = 320 \pi \: cubic \: units

Now,

 \boxed{ \bf{volume \: of \: cylinder =  \pi \: r {}^{2}h }}

  • r = 8
  • h = 15

\longmapsto \rm \:volume \: of \: cylinder \:   =  \pi  \times  64 \times 15 \\  \\ \longmapsto \rm \:volume \: of \: cylinder \:   = 960 \pi

Unfilled volume inside the cylinder = Volume of cylinder - volume of cone

➝ 960π - 320π

➝ 640π

So, Unfilled volume of cylinder = 640π

Option (iii) is correct

━━━━━━━━━━━━━━━━

Similar questions