Math, asked by arohi0150, 5 months ago

a solid sphere is melted and recasted into a hollow cylindee of uniform thickness.If external radius of base of cylinder is 4cm,it's height is 24cm and thickness 2cm,find the radius of Sphere.

No spamming.
No cut nd paste from net.​

Answers

Answered by Anonymous
4

Answer:

Radius is 6 cm.

Diagram :

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{2cm}}\put(9,17.5){\sf{24cm}}\end{picture}

Solution :

Given,

• Radius of solid sphere = \sf R_1.

• Thickness of hollow cylinder = 2cm.

• Height of hollow cylinder, h = 24cm.

• External radius of base of cylinder, \sf R_2 \ = \ 4cm.

Now,

Inner radius of hollow cylinder = Enternal radius(R) - thickness of cylinder.

  • Inner radius, \sf R_1 \ = \ (4-2)cm.
  • \sf R_1 \ = \ 2cm.

Hence,

\sf Volume \ of \ solid \ sphere, V \ = \ \dfrac {4}{3} \pi r^3

\sf Volume \ of \ hollow \ cylinder, V \ = \ \pi h (R_2^2 \ - \ R_1^2)

Volume of sphere = Volume of hollow cylinder.

\implies \sf \dfrac {4}{3} \pi r^3 \ = \ \pi h (R_2^2 \ - \ R_1^2)

\implies \sf r^3 \ = \ \dfrac {3 \pi h (R_2^2 \ - \ R_1^2)}{4 \pi}

\implies \sf r^3 \ = \ \dfrac {(3h (R_2^2 \ - \ R_1^2)}{4}

\implies \sf r^3 \ = \ \dfrac {3 \times 24 \times (4^2 - 2^2)}{4} cm^3

\implies \sf r^3 \ = \ \dfrac {3 \times 24 \times (16-4)}{4} cm^3

\implies \sf r^3 \ = \ \dfrac {2 \times 24 \times 12}{4} cm^3

\implies \sf r^3 \ = \ \dfrac {864}{4} cm^3

\implies \sf r^3 \ = \ 216 cm^3

\implies \sf r^3 \ = \ (6)^3 cm

\implies Radius, r \ = \ 6cm

 \\

\therefore Radius of the sphere is 6cm.

Answered by BrainlyEmpire
153

\large\underline{\red{\sf \orange{\bigstar} .}}Answer\large\underline{\red{\sf \pink{\bigstar} .}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

•The radius 'r'  of a solid sphere is 6 cm.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\pink{\sf \orange{\bigstar} .}}Diagram\large\underline{\red{\sf \blue{\bigstar} .}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{2cm}}\put(9,17.5){\sf{24cm}}\end{picture}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\red{\sf \green{\bigstar} .}}Given :-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • External radius of a hollow cylinder, R = 4 cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • Height of a cylinder, h = 24 cm ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
  • Thickness of a cylinder = 2 cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • Inner radius of a hollow cylinder ,r1 = External radius -  Thickness

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • r1 = 4 - 2 = 2 cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • Inner radius of a hollow cylinder ,r1 = 2 cm  

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • Here, solid sphere of Radius 'r' is melted and recast into a hollow cylinder.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\red{\sf \blue{\bigstar} .}}Volume of hollow cylinder = volume of sphere  

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • π(R² - r1²) h = 4/3 πr³

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • (R² - r1²) h = 4/3 × r³

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • (4² - 2²)× 24 = 4/3 × r³

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • (16 - 4) × 24 = 4/3 × r³

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • 12 × 24 = 4/3 × r³

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • r³ = (12 × 24 × 3)/4

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • r³ = 3 × 24 × 3

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • r = ³√3 × 2 × 2 × 2× 3 × 3

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • r = ³√(3× 3 × 3 )× (2 × 2 × 2)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\red{\sf \pink{\bigstar} .}}r = 3 × 2 = 6 cm\large\underline{\red{\sf \purple{\bigstar} .}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\pink{\sf{\star\;r \;= \;6 cm}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

•Hence, the radius of a solid sphere is 6 cm{\boxed{\green{\checkmark{}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀


akshaydinde38: hii
Similar questions