Physics, asked by NamrakDoshi, 8 months ago

A solid sphere of mass 0.1 kg and radius 2.5 cm rolls without sliding with a uniform velocity of 0.1 ms-1 along a straight line on a smooth horizontal table. Find its total energy.

Answers

Answered by mufeedhapc256
6

Answer:

7×10^-4

Explanation:

Total energy will be equal to the sum of translational and rotational kinetic energies.

Total KE= Translational KE + Rotational KE

translational \: ke \:  =  \frac{1}{2} m {v}^{2}  \\ rotational \: ke =  \frac{1}{2} i {w}^{2}

where,

  • m=mass
  • v=translational velocity
  • i=moment of inertia
  • w=Angular velocity.

 i \: of \: solid \: sphere =  \frac{2}{5}m {r}^{2}   =  \frac{2}{5} \times 0.1 \times  {(2.5 \times  {10}^{ - 2)} }^{2}  = 2.5 \times  {10}^{ - 5}  \\ w =  \frac{v}{r} =  \frac{0.1}{(2.5 \times  {10}^{ - 2} )}  = 4  \\  \\  \\  \frac{1}{2} m {v}^{2}  =  \frac{1}{2}  \times 0.1 \times  {0.1}^{2}  \\  = 5 \times  {10}^{ - 4}   \\  \\  \\  \frac{1}{2} i {w}^{2}  =  \frac{1}{2} 2.5 \times  {10}^{ - 5}  \times  {4}^{2}  \\  = 2 \times  {10}^{ - 4}

therefore, total energy is given by,

translational KE + rotational KE

i.e,

5 \times  {10}^{ - 4}  + 2 \times  {10}^{ - 4}  \\  = 7 \times  {10}^{ - 4}

Similar questions