Math, asked by JayaswethaLT, 10 months ago

A solid sphere of radius 6 cm is melted into a hollow cylinder of uniform thickness .If the external radius of the base of the cylinder is 5 cm and its height is 32 cm, then find the thickness of the cylinder. ​

Answers

Answered by ButterFliee
58

GIVEN:

  • Radius of sphere = 6 cm
  • External radius of cylinder = 5 cm
  • Height of the cylinder = 32 cm

TO FIND:

  • What is the thickness of the cylinder ?

SOLUTION:

Let the internal radius of the cylinder be 'r' cm and external radius be 'R' cm

We know that the formula for finding the Volume of sphere is:-

\large{\boxed{\bf{\star \: VOLUME = \dfrac{4}{3} \pi r^3 \: \star}}}

We know that the formula for finding the Volume of hollow cylinder is:-

\large{\boxed{\bf{\star \: VOLUME = \pi (R^2 - r^2) h \: \star}}}

According to question:-

\large\bf{\star \: \dfrac{4}{3} \pi r^3 = \pi (R^2 - r^2 ) h\: \star}

On putting the given values in the formula, we get

\sf{\longmapsto  \dfrac{4}{3} \cancel{\pi} r^3 = \cancel{\pi }(R^2 - r^2 ) h}

\sf{\longmapsto \dfrac{4}{3} \times (6)^3 = (5^2 - r^2 ) \times 32 }

\sf{\longmapsto \dfrac{4}{\cancel{3}} \times \cancel{216} = (25-r^2 ) \times 32 }

\sf{\longmapsto \dfrac{288}{32} = 25-r^2 }

\sf{\longmapsto 9-25 = -r^2 }

\sf{\longmapsto \cancel{-}16 = \cancel{-} r^2 }

\sf{\longmapsto \sqrt{16} = r }

\bf{\longmapsto 4 \: cm = r }

  • Internal radius = r = 4 cm

Thickness of cylinder = (R–r) = (54) = 1 cm

Hence, the thickness of the cylinder is 1 cm

______________________


Anonymous: Awesome :)
Answered by Anonymous
169

\rule{300}3

\huge{\blue{\fbox{\bold{\red{UR\:QUESTION}}}}}

\huge {\mathbf {\purple {Q.}}}}A solid sphere of radius 6 cm is melted into a hollow cylinder of uniform thickness .If the external radius of the base of the cylinder is 5 cm and its height is 32 cm, then find the thickness of the cylinder.

\rule{300}3

\huge{\blue{\fbox{\bold{\red{UR\:ANSWER}}}}}

\Large\underline\bold{given}

 \sf\dashrightarrow Radius\: of\: sphere\: = 6 cm

 \sf\dashrightarrow External\: radius\: of \:cylinder = 5 cm

 \sf\dashrightarrow Height\: of\: the \:cylinder\: = 32 cm

\Large\underline\bold{TO FIND,}

\undeline{\sf{\red{thickness\: of\: the \:cylinder }}}

\Large\underline\bold{diagram}

\setlength{\unitlength}{1mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\put(25,30){\line(5,0){20}}\put(25,30){\circle*{1}}\put(29,26){\sf\large{6cm}}\end{picture}

\Large\underline\bold{solution,}

\sf\underline\bold{let,}

 \sf\implies internal\:radius='r'cm

 \sf\implies external\:radius\:= 'R' cm

\sf\bold{volume\:of\:sphere=\dfrac{4}{3} \pi r^3 is }

 \sf\implies volume\:of\:hollow\:cylinder= \pi (R^2 - r^2) h

\sf\underline\bold{A.T.Q...........i.e,. according\:to\: question}

 \sf\implies \dfrac{4}{3} \pi r^3 = \pi (R^2 - r^2 ) h

\Large\bold{therefore,}

\sf{\implies \dfrac{4}{3} \cancel{\pi} r^3 = \cancel{\pi }(R^2 - r^2 ) h}

\sf{\implies \dfrac{4}{3} \times (6)^3 = (5^2 - r^2 ) \times 32 }

\sf{\implies \dfrac{288}{32} = 25-r^2 }

\sf{\implies 9-25 = -r^2 }

\sf{\implies \cancel{-}16 = \cancel{-} r^2 }

\sf{\implies \sqrt{16} = r }

\sf{\implies 4 \: cm = r }

\sf{\fbox{r=4cm}}

 \sf\therefore Thickness\: of \:cylinder = (R-r) = (5-4) = 1 cm

\sf{\fbox{thickness=1cm}}

\rule{300}3

\tt\huge\red{\text{BE \:BRAINLY}}

\rule{300}3


Anonymous: Great :)
Similar questions