A solid sphere of uniform density and radius R is cut off into two pieces by a plane. The plane is at a distance R/2 from the center of sphere.
Find the center of mass of the bigger portion.
Answers
Answered by
1
see the diagram.
Let the density be d.
Consider a disc of radius r at y from center of sphere. Clearly r² = R² - y²
dm = π r² dy * d = π (R² - y²) d dy
Mass of smaller part = M1. Mass of bigger part = M2.
![M1=\pi d \int\limits_{y=\frac{R}{2}}^R {(R^2-y^2)} \, dy\\\\=\pi d[R^2y-\frac{y^3}{3}]_\frac{R}{2}^R=\frac{5}{24}\pi R^3 d\\\\C.M.\ of\ M1=\frac{\pi d}{M1} \int\limits_{y=\frac{R}{2}}^R {y*(R^2-y^2)} \, dy\\\\=\frac{\pi d}{M1}[\frac{R^2y^2}{2}-\frac{y^4}{4}]_\frac{R}{2}^R=\frac{9}{64*M1}\pi R^3 d=\frac{27R}{40}\\\\ M1=\pi d \int\limits_{y=\frac{R}{2}}^R {(R^2-y^2)} \, dy\\\\=\pi d[R^2y-\frac{y^3}{3}]_\frac{R}{2}^R=\frac{5}{24}\pi R^3 d\\\\C.M.\ of\ M1=\frac{\pi d}{M1} \int\limits_{y=\frac{R}{2}}^R {y*(R^2-y^2)} \, dy\\\\=\frac{\pi d}{M1}[\frac{R^2y^2}{2}-\frac{y^4}{4}]_\frac{R}{2}^R=\frac{9}{64*M1}\pi R^3 d=\frac{27R}{40}\\\\](https://tex.z-dn.net/?f=M1%3D%5Cpi+d+%5Cint%5Climits_%7By%3D%5Cfrac%7BR%7D%7B2%7D%7D%5ER+%7B%28R%5E2-y%5E2%29%7D+%5C%2C+dy%5C%5C%5C%5C%3D%5Cpi+d%5BR%5E2y-%5Cfrac%7By%5E3%7D%7B3%7D%5D_%5Cfrac%7BR%7D%7B2%7D%5ER%3D%5Cfrac%7B5%7D%7B24%7D%5Cpi+R%5E3+d%5C%5C%5C%5CC.M.%5C+of%5C+M1%3D%5Cfrac%7B%5Cpi+d%7D%7BM1%7D+%5Cint%5Climits_%7By%3D%5Cfrac%7BR%7D%7B2%7D%7D%5ER+%7By%2A%28R%5E2-y%5E2%29%7D+%5C%2C+dy%5C%5C%5C%5C%3D%5Cfrac%7B%5Cpi+d%7D%7BM1%7D%5B%5Cfrac%7BR%5E2y%5E2%7D%7B2%7D-%5Cfrac%7By%5E4%7D%7B4%7D%5D_%5Cfrac%7BR%7D%7B2%7D%5ER%3D%5Cfrac%7B9%7D%7B64%2AM1%7D%5Cpi+R%5E3+d%3D%5Cfrac%7B27R%7D%7B40%7D%5C%5C%5C%5C)
Let the center of mass of bigger part M2 be y.
![M2=\frac{4}{3}\pi R^3 d-\frac{5}{24}\pi R^3 d=\frac{9}{8}\pi R^3 d\\\\combining\ two\ parts:\ \frac{27}{40}R*\frac{5}{24}\pi R^3 d+y*\frac{9}{8}\pi R^3 d=0\\\\y=-\frac{R}{8} M2=\frac{4}{3}\pi R^3 d-\frac{5}{24}\pi R^3 d=\frac{9}{8}\pi R^3 d\\\\combining\ two\ parts:\ \frac{27}{40}R*\frac{5}{24}\pi R^3 d+y*\frac{9}{8}\pi R^3 d=0\\\\y=-\frac{R}{8}](https://tex.z-dn.net/?f=M2%3D%5Cfrac%7B4%7D%7B3%7D%5Cpi+R%5E3+d-%5Cfrac%7B5%7D%7B24%7D%5Cpi+R%5E3+d%3D%5Cfrac%7B9%7D%7B8%7D%5Cpi+R%5E3+d%5C%5C%5C%5Ccombining%5C+two%5C+parts%3A%5C+%5Cfrac%7B27%7D%7B40%7DR%2A%5Cfrac%7B5%7D%7B24%7D%5Cpi+R%5E3+d%2By%2A%5Cfrac%7B9%7D%7B8%7D%5Cpi+R%5E3+d%3D0%5C%5C%5C%5Cy%3D-%5Cfrac%7BR%7D%7B8%7D)
Ans: - R/8.
Let the density be d.
Consider a disc of radius r at y from center of sphere. Clearly r² = R² - y²
dm = π r² dy * d = π (R² - y²) d dy
Mass of smaller part = M1. Mass of bigger part = M2.
Let the center of mass of bigger part M2 be y.
Ans: - R/8.
Attachments:
![](https://hi-static.z-dn.net/files/d3d/51c3fdff24374d8a8ba0198a013659ec.png)
kvnmurty:
click on the red hearts thanks pls
Similar questions