Physics, asked by komal3233, 19 days ago

A solid sphere rolls down an inclined plane of inclination 60°, the acceleration of the centre of mass of the sphere is (Assume pure rolling) ​

Answers

Answered by malavikathilak123
0

Answer:

The acceleration of the center of  mass of the sphere is 6.062 m/s^{2}

Explanation:

Let mass of the sphere is M

Net force of the sphere = Mg\sin \theta = Mg\sin\ 60 = Mg\times \frac{\sqrt{3} }{2}

Frictional force = f

So,

  Ma=Mg\sin \theta -f             (where a is the acceleration of the sphere)

 ⇒f=Mg\sin \theta -Ma

We know that in rolling motion,

              I\alpha =fR ( where, \alpha \rightarrow angular acceleration

                                           I\rightarrow moment of inertia

                                           f\rightarrow frictional force

                                           R\rightarrow radius )

        ⇒\frac{2}{5}MR^2\times \frac{a}{R}=fR                    ( for pure rolling \alpha = \frac{a}{R} )

            \frac{2}{5}M\times a=Mg\sin \theta -Ma

          \frac{2a}{5}+a=g\sin \theta

          \frac{7a}{5}=g\sin \theta

            a=\frac{5}{7}g\sin \theta =\frac{5}{7}\times 9\cdot 8\times \sin 60=6.062 m/s^{2}

                 

                                           

Similar questions