Math, asked by kaviviji143143, 7 months ago

a solid sphere with TSA 24sq.cm is bisected into two hemisphere the TSA of one of the hemisphere is ​

Answers

Answered by Sambhavs
17

Answer:

&lt;! Doctype html&gt;</p><p>&lt;html&gt;</p><p>&lt;title&gt; Canvas&lt;/title&gt;</p><p>&lt;/head&gt;</p><p>&lt;body&gt;</p><p>&lt;div class="caravan"&gt;&lt;/div&gt;</p><p></p><p>&lt;style&gt;</p><p>.caravan{</p><p>position: relative;</p><p>margin : 0 auto;</p><p>margin-top: 150px;</p><p>width: 398px;</p><p>height: 235px;</p><p>background: linear-gradient(0deg, rgba(255,153,154,1) 2%, rgba(248,185,185,1) 3%, rgba(249,187,186,1) 4%, rgba(249,187,186,1) 6%, rgba(255,204,203,1) 44%, rgba(253,182,183,1) 45%, rgba(253,182,183,1) 46%, rgba(254,254,253,1) 47%, rgba(254,254,253,1) 84%, rgba(250,250,250,1) 100%);</p><p>border-radius: 45px;</p><p>    border-top-right-radius: 105px 169px;</p><p>   </p><p>}</p><p></p><p>.caravan::before{</p><p>  content: '';</p><p>  position: absolute;</p><p>  width: 390px;</p><p>  height: 500px;</p><p>  top: -100px;</p><p>  background-repeat: no-repeat;</p><p>      background-image: radial-gradient(ellipse, #cbcbcb 57%, transparent),radial-gradient(ellipse, #cbcbcb 57%, transparent),radial-gradient(ellipse, #808080 80%, transparent),radial-gradient(ellipse, #808080 80%, transparent), linear-gradient(0deg, rgba(230,230,230,1) 5%, rgba(157,157,157,0) 5%, rgba(127,127,127,0) 94%, rgba(230,230,230,1) 96%),linear-gradient(135deg, rgba(127,127,127,1) 2%, rgba(153,153,153,1) 2%, rgba(153,153,153,1) 24%, rgba(127,127,127,1) 24%, rgba(127,127,127,1) 48%, rgba(153,153,153,1) 48%, rgba(153,153,153,1) 86%, rgba(127,127,127,1) 86%, rgba(127,127,127,1) 100%), linear-gradient(135deg, rgba(127,127,127,1) 2%, rgba(153,153,153,1) 2%, rgba(153,153,153,1) 11%, rgba(127,127,127,1) 11%, rgba(127,127,127,1) 56%, rgba(153,153,153,1) 56%, rgba(153,153,153,1) 90%, rgba(127,127,127,1) 86%, rgba(127,127,127,1) 100%),linear-gradient(#e6e6e6,#e6e6e6),linear-gradient(#e6e6e6,#e6e6e6),linear-gradient(0deg, rgba(173,173,173,1) 1%, rgba(157,157,157,0) 0%, rgba(127,127,127,0) 99%, rgba(173,173,173,1) 100%),linear-gradient(90deg, rgba(173,173,173,1) 2%, rgba(157,157,157,0) 2%, rgba(127,127,127,0) 97%, rgba(173,173,173,1) 98%),linear-gradient(0deg, rgba(207,207,207,1) 1%, rgba(230,230,230,1) 0%, #fafafa 3%, #fafafa 99%, rgba(230,230,230,1) 99%, rgba(207,207,207,1) 101%), linear-gradient(90deg, rgba(207,207,207,1) 1%, rgba(230,230,230,1) 0%, #fafafa 3%, #fafafa 99%, rgba(230,230,230,1) 99%, rgba(207,207,207,1) 101%),radial-gradient(circle closest-side, rgba(228,229,233,1) 139%, rgba(155,142,141,1) 142%),linear-gradient(0deg, #eda7aa 5%, rgba(157,157,157,0) 5%, rgba(127,127,127,0) 94%, #eda7aa 96%),linear-gradient(90deg, #eda7aa 5%, rgba(157,157,157,0) 5%, rgba(127,127,127,0) 94%, #eda7aa 96%), linear-gradient(#b6b7b2,#b6b7b2),linear-gradient(#b6b7b2,#b6b7b2),radial-gradient(ellipse, #c9cfcf 80%, transparent),radial-gradient(circle closest-side, #7e7e7e 78%, #656565 98%, transparent 5%),radial-gradient(circle closest-side, #7e7e7e 78%, #656565 98%, transparent 5%),radial-gradient(ellipse at 50% 82%, #4c4c4c 67%, transparent 52%),radial-gradient(ellipse at 50% 82%, #4c4c4c 67%, transparent 52%);</p><p>    background-size: 9px 15px, 9px 15px , 9px 25px , 25px 9px ,72px 35px, 72px 54px,72px 54px,81px 61px,81px 61px,84px 142px,84px 142px,84px 174px,86px 174px, 24px 18px , 24px 25px,24px 25px, 6px 7px,6px 7px, 187px 9px,45px 54px,45px 54px,55px 29px,55px 29px;</p><p>    background-position: 143px 197px,143px 283px, 215px 224px, 281px 233px , 36px 152px,36px 151px,282px 151px,31px 148px,277px 148px,276px 146px,276px 146px, 148px 146px , 147px 146px, 386px 265px , 31px 267px , 31px 267px , 124px 92px, 250px 92px,99px 83px,293px 306px, 63px 306px, 58px 305px , 288px 305px;</p><p>}</p><p>&lt;/style&gt;</p><p>&lt;/body&gt;</p><p>&lt;/html&gt;

Answered by REDPLANET
2

Answer:

TSA of sphere = 4πr² = 24 cm²

                         = πr² = 6 cm

The total surface area of the hemisphere = 3πr²

                                                                        = 3 × 6 cm²

                                                                        = 18 cm²

TSA of Hemisphere is 18cm^{2}.

                 

Similar questions