A solution prepared by adding 360 g of glucose to 864 g of water. calculate mole fraction of glucose. (molar mass of glucose = 180
Answers
Given mass of water,
Given mass of glucose,
Molar mass of water,
Molar mass of glucose,
No. of moles of water,
No. of moles of glucose,
Then, mole fraction of glucose,
Hence 0.04 is the answer.
Answer:
Given mass of water, \sf{W_A=864\ g}W
A
=864 g
Given mass of glucose, \sf{W_B=360\ g}W
B
=360 g
Molar mass of water, \sf{M_A=18\ g\,mol^{-1}}M
A
=18 gmol
−1
Molar mass of glucose, \sf{M_B=180\ g\,mol^{-1}}M
B
=180 gmol
−1
No. of moles of water,
\sf{\longrightarrow n_A=\dfrac{W_A}{M_A}}⟶n
A
=
M
A
W
A
\sf{\longrightarrow n_A=\dfrac{864\ g}{18\ g\,mol^{-1}}}⟶n
A
=
18 gmol
−1
864 g
\sf{\longrightarrow n_A=48\ mol}⟶n
A
=48 mol
No. of moles of glucose,
\sf{\longrightarrow n_B=\dfrac{W_B}{M_B}}⟶n
B
=
M
B
W
B
\sf{\longrightarrow n_B=\dfrac{360\ g}{180\ g\,mol^{-1}}}⟶n
B
=
180 gmol
−1
360 g
\sf{\longrightarrow n_B=2\ mol}⟶n
B
=2 mol
Then, mole fraction of glucose,
\sf{\longrightarrow \chi_B=\dfrac{n_B}{n_A+n_B}}⟶χ
B
=
n
A
+n
B
n
B
\sf{\longrightarrow \chi_B=\dfrac{2\ mol}{48\ mol+2\ mol}}⟶χ
B
=
48 mol+2 mol
2 mol
\sf{\longrightarrow \chi_B=\dfrac{2\ mol}{50\ mol}}⟶χ
B
=
50 mol
2 mol
\sf{\longrightarrow\underline{\underline{\chi_B=0.04}}}⟶
χ
B
=0.04
Hence 0.04 is the answer.