Chemistry, asked by geethikavirendrarao2, 8 months ago

a spectral line in a balmer series line of hydrogen corresponds to
6561 A(wavelength) find the energy levels involved in transition responsible for the origin of this line(R=109677 1/cm)

Answers

Answered by zaid4080
3

Answer:

Transition of n 3→2 6→2

Name H-α / Ba-α H-δ / Ba-δ

Wavelength (nm, air) 656.279 410.1734

Energy difference (eV) 1.89 3.03

Color Red Violet

Answered by nirman95
13

Given:

A spectral line in a balmer series line of hydrogen corresponds to 6561 A(wavelength)

To find:

Energy levels involved.

Calculation:

Let the higher orbit be n_(2).

In Balmer series, electron will get transferred from n_(2) to 2nd orbit.

Applying Rydberg's Formula:

 \therefore \:  \dfrac{1}{ \lambda}  = R \bigg \{  \dfrac{1}{ {(2)}^{2} }  - \dfrac{1}{ { (n_{2})}^{2} }   \bigg \}

 =  > \:  \dfrac{1}{ 6561 \times  {10}^{ - 10} }  = 1.09 \times  {10}^{7}  \bigg \{ \dfrac{1}{4}  -  \dfrac{1}{ { (n_{2})}^{2} }  \bigg \}

 =  > \:  \dfrac{1}{ 6.561 \times  {10}^{ - 7} }  = 1.09 \times  {10}^{7}  \bigg \{ \dfrac{1}{4}  -  \dfrac{1}{ { (n_{2})}^{2} }   \bigg \}

 =  > \:  0.152 \times  {10}^{7}   = 1.09 \times  {10}^{7}  \bigg \{  \dfrac{1}{4} -  \dfrac{1}{ { (n_{2})}^{2} }  \bigg \}

 =  > \:  0.152   = 1.09  \times \bigg \{  \dfrac{1}{4} -  \dfrac{1}{ { (n_{2})}^{2} }  \bigg \}

 =  > \:  0.138   =  \bigg \{ \dfrac{1}{4}   - \dfrac{1}{ { (n_{2})}^{2} }  \bigg \}

 =  > \:   \dfrac{1}{ { (n_{2})}^{2}} = 0.25 - 0.138

 =  > \:   \dfrac{1}{ { (n_{2})}^{2}} = 0.112

 =  > \:  { (n_{2})}^{2} = \dfrac{1}{ 0.112}

 =  > \:  { (n_{2})}^{2} =8.96

 =  > \:  { (n_{2})}^{2}  \approx \:9

 =  > \:   (n_{2}) \approx \: \sqrt{9}

 =  > \:   (n_{2}) \approx \: 3

So, electron originated from n = 3 .

Similar questions