Math, asked by rohithkanoju, 2 months ago

A sphere, a cylinder and a cone are of the same radius and same height. Find the ratio of their curved

surface areas​

Answers

Answered by ItzMeMukku
3

{ \large{ \sf{ \underbrace{\underline{\bigstar \: Answer}}}}}

{ \small{ \boxed{ \red{ \underline{ \bf \:Since}}}}}

\small\color{magenta}{the \:height \:of \:a sphere \:is \:the \:diameter,\: the\: cone \:and \:cylinder\: have\: height \:2r.}

\textbf\color{blue}{Then Curved surface area of Sphere}

\huge\color{purple}{= 4πr²}

\textbf\color{green}{Curved surface area of cylinder }

\huge\color{purple}{= 2πr(2r) = 4πr²}

\textbf\color{brown}{Curved surface area of cone}

\huge\color{gold}{= πrl}

\tt\color{pink}{where,}

\small\color{darkgreen}{l = √(r2 + h2 ) = √( r2 + (2r)2) = √(5r2) = r√5}

\textbf\color{brown}{Curved surface area of cone}

\huge\color{lime}{= π√5r2}

\bold{Now,}

Ratio of CSA 's a sphere ,cylinder and a cone

\mapsto\bf{4πr2:2πrh : πrl}

\mapsto\bf{4πr2:4πr2 : πr2√5}

\color{green}\boxed{\sf{= 4 : 4 : √5}}

Thankyou :)

Scrool to see full answer :)

Similar questions