Math, asked by SampriktaPatra, 1 year ago

a sphere and a cube have the same surface show that ratio of the volume of the sphere to that of cube is :
 \sqrt{6} :  \sqrt{\pi}

Answers

Answered by pratik40
6
a sphere and a cube have same surface area

total surface area of sphere=total surface area of cube
4\pi {r}^{2} = 6 {l}^{2}

 \frac{ {r}^{2} }{ { l}^{2} } = \frac{6}{4\pi}

 \frac{r}{l} = \frac{ \sqrt{6} }{2 \sqrt{\pi} } .......................(1)


 \frac{volume \: of \: sphere}{volume \: of \: cube} = \frac{ \frac{4}{3} \times \pi {r}^{3} }{ {l}^{3} }


 = \frac{4}{3} \pi \times {( \frac{r}{l}) }^{3}

 = \frac{4}{3} \pi \times ({ \frac{ \sqrt{6} }{2 \sqrt{\pi} }) }^{3}

 = \frac{4}{3} \pi \times \frac{ \sqrt{6 } \times \sqrt{6} \times \sqrt{6} }{8 \times \sqrt{\pi} \times \sqrt{\pi} \times \sqrt{\pi} }

 = \frac{4}{3}\pi \times \frac{6 \times \sqrt{6} }{8 \times \pi \times \sqrt{\pi} }

 = \frac{2 \sqrt{6} }{2 \sqrt{\pi} }

 = \frac{ \sqrt{6} }{ \sqrt{\pi} }
hence, proved

hope this helps

SampriktaPatra: Thank u vry much
pratik40: if u like and is perfect then mark as brainliest answer.
SampriktaPatra: Yaa i will
SampriktaPatra: bt dont have other answers na
pratik40: ok no problem .
pratik40: but it helped you na
SampriktaPatra: Haan
SampriktaPatra: it helped me a lot
Similar questions