Math, asked by sujitcadbury, 5 months ago

A sphere is melted and recast into a hemisphere. Show that the ratio of surface area of sphere to that of hemisphere is 4:3\sqrt[3]{4} (4 : 3 cube root of 4).

Answers

Answered by MaheswariS
3

\textbf{Given:}

\textsf{A sphere is melted and recast into a hemisphere}

\mathsf{}

\textbf{To prove:}

\textsf{Ratio of surface area of sphere to that of hemisphere is}

\mathsf{4:3\,\sqrt[3]{4}}

\textbf{Solution:}

\textbf{Formula used:}

\boxed{\begin{minipage}{10cm}$\\\textsf{Surface of a sphere of radius 'r' units}\;\mathsf{=\dfrac{4}{3}\pi\,r^3\;units^3}\\\\\textsf{Surface of a hemisphere of radius 'r' units}\;\mathsf{=\dfrac{2}{3}\pi\,r^3\;units^3}\\$\end{minipage}}

\mathsf{Let\;r_1\;and\;r_2\;}\;\textsf{be the radii of sphere and hemisphere respectively}

\textsf{As per given data,}

\mathsf{\dfrac{4}{3}\pi\,{r_1}^3=\dfrac{2}{3}\pi\,{r_2}^3}

\mathsf{2\,{r_1}^3={r_2}^3}

\mathsf{\dfrac{{r_1}^3}{{r_2}^3}=\dfrac{1}{2}}

\implies\boxed{\mathsf{\dfrac{r_1}{r_2}=\dfrac{1}{\sqrt[3]{2}}}}

\mathsf{Now}

\mathsf{\dfrac{\textsf{Surface area of sphere}}{\textsf{Surface area of hemi-sphere}}}

\mathsf{=\dfrac{4\,\pi\,{r_1}^2}{3\,\pi\,{r_1}^2}}

\mathsf{=\dfrac{4\,{r_1}^2}{3\,{r_1}^2}}

\mathsf{=\dfrac{4(1)^2}{3(\sqrt[3]{2})^2}}

\mathsf{=\dfrac{4}{3(2^\frac{1}{3})^2}}

\mathsf{=\dfrac{4}{3(2^2)^\frac{1}{3}}}

\mathsf{=\dfrac{4}{3(4)^\frac{1}{3}}}

\mathsf{=\dfrac{4}{3\,\sqrt[3]{4}}}

\textbf{Answer:}

\mathsf{Ratio\;of\;surface\;areas\;is\;4:3\,\sqrt[3]{4}}

\textbf{Find more:}

Answered by Beautyprincess22
1

Answer:

....

hi dear

Step-by-step explanation:

have a great day

Similar questions