Physics, asked by ravisanakambi123, 9 months ago

A sphere mass 40 kg is attracted by another sphere of mass 80 kg by force of 2.5 into 10 raise to minus 6 Newton when their centres are 30 millimeter apart find G ?
Plz send Fast I Will Mark as brainliest​

Answers

Answered by Anonymous
6

GIVEN :

  • Mass of sphere, m1= 40 kg.
  • Mass of another sphere, m2 = 80 kg.
  • Force, F = \sf 2.5 \: \times \: 10^{-6} \: N.
  • Radius, R = 30 mm = 30/10 => 3 cm.

TO FIND :

  • Find the gravitational force, G = ?

FORMULA USED :

  • \sf G \: = \: \dfrac {F \: \times \: R^{2}}{M_1 \: × \: M_2}

SOLUTION :

Now, Using the formula of G,

\tt G \: = \: \dfrac {F \: \times \: R^{2}}{M_1 \: × \: M_2}

\implies \sf G \: = \: \dfrac {2.5 \: \times \: 10^{-6} \: \times \: 3^{2}}{40 \: \times \: 80}

\implies \sf G \: = \: \dfrac {25 \: \times 9 \: \times \: 10^{-6}}{32 \: \times \: 1000}

\implies \sf G \: = \: \dfrac {225}{32} \: \times \: 10^{-9}

\implies \sf G \: = \: 7.03 \: \times \: 10^{-9} \: \dfrac {N.m^{2}}{kg^{2}}

\therefore \red {\boxed {\sf G \: = \: 7.03 \: \times \: 10^{-9} \: \dfrac {N.m^{2}}{kg^{2}}}}

Similar questions