Math, asked by anuragpal14, 6 months ago

A sphere of diameter 18 cm is dropped into a cylindrical vessel of diameter 36 cm partly filled with water. If the sphere is completely submerged then the water level rises ​

Answers

Answered by EliteZeal
274

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Diameter of sphere = 18 cm

 \:\:

  • Sphere is dropped in cylindrical vessel partly filled with water

 \:\:

  • Diameter of cylindrical vessel = 36 cm

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • If the sphere is completely submerged then the water level rises

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Diameter of sphere = 18 cm

 \:\:

Radius of sphere =  \sf \dfrac { Diameter  } { 2 }

 \:\:

➨ Radius = 9 cm

 \:\:

 \underline{\bold{\texttt{Volume of sphere :}}}

 \:\:

 \sf \dfrac { 4 } { 3 } \pi r^3

 \:\:

  • r = Radius of sphere

 \:\:

 \sf \dfrac { 4 } { 3 } \pi 9^3

 \:\:

 \sf \dfrac { 4 } { \cancel 3 } \pi \times \cancel 9 \times  9 \times 9

 \:\:

 \sf 4 \times \pi \times 3 \times 9 \times 9

 \:\:

➨ 972π cm³ ------ (1)

 \:\:

  • Diameter of cylindrical vessel = 36 cm

 \:\:

Radius of cylindrical vessel =  \sf \dfrac { Diameter  } { 2 }

 \:\:

➨ Radius = 18 cm

 \:\:

 \underline{\bold{\texttt{Volume of cylindrical vessel :}}}

 \:\:

➠ πR²h

 \:\:

  • R = Radius of cylindrical vessel

  • h = Height of water raised when sphere is dropped

 \:\:

➨ π18²h cm³ ------- (2)

 \:\:

Now ,

 \:\:

Volume of water rise = Volume of sphere

 \:\:

As water will rise in the cylindrical vessel only hence the volume of water rise can be calculated by volume of cylindrical vessel

 \:\:

 \underline{\bold{\texttt{Thus , (1) = (2)}}}

 \:\:

➜ 972π = π18²h

 \:\:

➜ 972 = 18²h

 \:\:

 \sf h = \dfrac { 972 } { 18 \times 18 }

 \:\:

 \sf h = \dfrac { 54 } { 18 }

 \:\:

➨ h = 3 cm

 \:\:

Hence the water in cylindrical vessel will rise upto 3 cm from its original point when the sphere is dropped.

Answered by Ranveerx107
2

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Diameter of sphere = 18 cm

 \:\:

  • Sphere is dropped in cylindrical vessel partly filled with water

 \:\:

  • Diameter of cylindrical vessel = 36 cm

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • If the sphere is completely submerged then the water level rises

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Diameter of sphere = 18 cm

 \:\:

Radius of sphere =  \sf \dfrac { Diameter  } { 2 }

 \:\:

➨ Radius = 9 cm

 \:\:

 \underline{\bold{\texttt{Volume of sphere :}}}

 \:\:

 \sf \dfrac { 4 } { 3 } \pi r^3

 \:\:

r = Radius of sphere

 \:\:

 \sf \dfrac { 4 } { 3 } \pi 9^3

 \:\:

 \sf \dfrac { 4 } { \cancel 3 } \pi \times \cancel 9 \times  9 \times 9

 \:\:

 \sf 4 \times \pi \times 3 \times 9 \times 9

 \:\:

➨ 972π cm³ ------ (1)

 \:\:

Diameter of cylindrical vessel = 36 cm

 \:\:

Radius of cylindrical vessel =  \sf \dfrac { Diameter  } { 2 }

 \:\:

➨ Radius = 18 cm

 \:\:

 \underline{\bold{\texttt{Volume of cylindrical vessel :}}}

 \:\:

➠ πR²h

 \:\:

R = Radius of cylindrical vessel

h = Height of water raised when sphere is dropped

 \:\:

➨ π18²h cm³ ------- (2)

 \:\:

Now ,

 \:\:

  • Volume of water rise = Volume of sphere

 \:\:

〚 As water will rise in the cylindrical vessel only hence the volume of water rise can be calculated by volume of cylindrical vessel 〛

 \:\:

 \underline{\bold{\texttt{Thus , (1) = (2)}}}

 \:\:

➜ 972π = π18²h

 \:\:

➜ 972 = 18²h

 \:\:

 \sf h = \dfrac { 972 } { 18 \times 18 }

 \:\:

 \sf h = \dfrac { 54 } { 18 }

 \:\:

➨ h = 3 cm

 \:\:

  • Hence the water in cylindrical vessel will rise upto 3 cm from its original point when the sphere is dropped.
Similar questions