Math, asked by harshita22005522, 5 months ago

a sphere of radius 8 cm is melted and recast into a cone of height 32 cm find CSA of the cone​

Answers

Answered by sonisiddharth751
5

C.S.A. of the Cone = 6436.57 cm² .

Step-by-step explanation:

 \\  \sf \large \pink{Given} \\

  • Radius of Sphere = 8 cm .
  • Height of Cone = 32 .
  • Sphere is melted and recast into Cone .

Therefore,

 \boxed{ \sf Volume  \: of \:  Sphere = Volume  \: of  \: Cone .} \\

 \sf  \large \pink{To \: find}

  • C.S.A( Curved Surface Area) of the Cone .

 \\  \sf \large \pink{Formula \: used} \:  \\  \\  \sf \: volume \: of \: spere \:  =  \dfrac{4}{3} \pi {r}^{3}  \\  \\ \sf \: volume \: of \: cone \:  =  \dfrac{1}{3} \pi {r}^{2}  \\

  \sf \large \pink{Solution} \\

Volume of Sphere = Volume of Cone .

So,

 \sf \:  \dfrac{4}{3} \pi {r}^{3} _{(Sphere)}  =  \dfrac{1}{3} \pi {r}^{2}_{(Cone)}  h \: \\

 \\ \sf \:  \dfrac{4}{ \cancel3} \cancel \pi {r}^{3}_{(Sphere)}  =  \dfrac{1}{ \cancel3}  \cancel\pi {r}^{2}_{(Cone)} h \:  \\  \\   \sf \: 4 \times 8 \times 8 \times 8 =  {r}^{2}  \times 32 \\  \\  \sf 2048 =  {r}^{2}   \times 32 \\  \\  \sf \:  {r}^{2}  = \dfrac{2048}{32}  \\  \\ \sf \:  {r}^{2} =64 \\  \\ \underline{\boxed{ \sf  r \:  = 8 \: cm }}  \\

Now, we have the value of Radius of the Cone .

We have to find the Curved Surface Area of the Cone.

Curved surface of Cone = πrl .

Here, we have

  • r = 8 cm
  • h = 32 cm

we have to find out the value of l (slant height)

 \sf \: l =  \sqrt{ {r}^{2} +  {h}^{2}  }  \\  \\ \sf \: l =  \sqrt{ {(8)}^{2}  +  {(32)}^{2} }  \\  \\ \sf \: l =  \sqrt{65536}  \\  \\ \sf \: l  = 256cm \\

Now,

 \sf \: C.S.A. \: of \: cone \:  =  \dfrac{22}{7}  \times 8 \times 256 \\  \\ \sf \: C.S.A.  \: of \: cone \:  =  \dfrac{45056}{7}  \\  \\ \underline{\boxed{\sf \: C.S.A. \: of \: cone \:  = 6436 .57 \: {cm}^{2}}} \:

 \\

Some Formula related to Cone and Sphere :-

  • C.S.A of Cone = πrl
  • C.S.A of Sphere = T.S.A of Sphere = 4πr² .
  • T.S.A of Cone = πrl + πr² .
  • Volume of Cone = ⅓ πr²h .
  • Volume of Sphere = ⁴/₃ πr³ .
Similar questions