Math, asked by menkakadam9, 5 months ago

A spherical ball is divided into two equal halves. If the curved surface area of each half is 56.57 cm, find the volume of the spherical ball. [use t = 3.14​

Answers

Answered by TheFairyTale
43

Answer:

  • 113.04 cm³

Step-by-step explanation:

We know the formula of CSA of hemisphere. (As the spherical ball is divided into two equal halves, it forms a hemisphere)

 \sf \: CSA = 2\pi {r}^{2}

  • r = radius of hemisphere

As given,

 \sf \: 2\pi {r}^{2}  = 56.57

 \implies \sf \:  2 \times 3.14 \times  {r}^{2}  = 56.57

 \implies \sf \:   {r}^{2}  =  \dfrac{56.57}{6.28}  = 9

 \sf \: r =  \sqrt{9}  = 3

Now, the formula of volume of sphere,

 \sf \: V =  \dfrac{4}{3} \pi  {r}^{3}

According to given question,

 \sf \: V =  \dfrac{4}{3}  \times 3.14 \times  {3}^{3}

 \therefore \sf \: V = 113.04 \:  {cm}^{3}


bkcreations: hi
Answered by Anonymous
21

\large\underline{\underline{\sf{\maltese\:\: \red{Given :}}}}

• A spherical ball is divided into two equal parts.

• Curved Surface Area (CSA) of each half = 56.57 cm

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\sf{\maltese\:\: \red{To \: Find \: : }}}}

• Volume of the spherical ball = ?

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\sf{\maltese\:\: \red{Concept \: Used \: : }}}}

• Curved Surface Area (CSA) of Sphere = 2πr²

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\sf{\maltese\:\: \red{Solution \: : }}}}

\sf 2\pi r^2  = 56.57cm^2

 \implies 2 \: \times \: 3.14 \: \times \: r^2 = 56.57

\implies r^2 = \frac{56.57 }{2 \: \times 3.14}

 \implies r^2 = 9 \\ \implies r = \sqrt{9}

 \implies r \approx \bold{3 cm}

\\

Volume of Sphere = \frac{4}{3} \pi r^3

Volume of Sphere = \frac {4}{3} \: \times \: 3.14 \: \times \: 3 \: \times \: 3 \: \times \: 3

Volume of Sphere = \bold{113.04 \: cm^3}

\\

∴ Volume of the spherical ball is 113.04 cm³.

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\sf{\maltese\:\: \red{Additional \: Information \: :}}}}

Formulas related to Surface Area & Volume :

 \begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

Similar questions