Math, asked by jsjskvdidkebwibrksro, 4 months ago

A spherical ball is divided into two equal halves. If the curved surface area of each half is 56.57 cm?, find the volume of the spherical ball.​

Answers

Answered by sairam1919
80

Step-by-step explanation:

Answer:

The volume of the sphere is 113.04 cm³

Step-by-step explanation:

Solution:

Radius of the Hemisphere:

Curved surface of half of the spherical ball is 56.57 cm²

\boxed{\sf{CSA \: of \: hemisphere = 2\pi {r}^{2}}}

\sf{\longrightarrow} \: 2\pi{r}^{2}  =  56.5

\sf{\longrightarrow} \:  {r}^{2}   =   \dfrac{56.57}{2} \times  \pi

\sf{\longrightarrow} \: {r}^{2}  =   \dfrac{56.57}{2} \times 3.14

\sf{\longrightarrow} \: {r}^{2} = 9

\sf{\longrightarrow} \: {r}= 3

Radius of the Hemisphere = 3 cm

\rule{300}{1.5}

Volume of the sphere:

\boxed{\sf{Volume \: of \: the \: sphere=  \frac{4}{3}\pi r^{3}}}

\sf{\longrightarrow} \: \dfrac{4}{3}\pi (3)^{3}

\sf{\longrightarrow} \: \dfrac{4}{3} \times 3.14 \times  (3)^{3}

\sf{\longrightarrow} \: \dfrac{4}{3} \times 3.14 \times  27

\sf{\longrightarrow} \: 12.56  \times  9

\sf{\longrightarrow} \: 113.04 \:  {cm}^{3}

Therefore, the volume of the sphere is 113.04 cm³

Answered by Anonymous
270

Answer:

113.04 cm³

Step-by-step explanation:

We know the formula of CSA of hemisphere. (As the spherical ball is divided into two equal halves, it forms a hemisphere)

\sf \: CSA = 2\pi {r}^{2} \:

r = radius of hemisphere

As given,

\sf \: 2\pi {r}^{2} = 56.57 \\ </p><p>\implies \sf \: 2 \times 3.14 \: times \: {r}^{2} = 56.57 \\ </p><p>\implies \sf \: {r}^{2} =  \dfrac{56.57} {6.28} = 9</p><p>\sf \:  \\ r = \sqrt{9} = 3 \\ </p><p> \:  \:

Now, the formula of volume of sphere,

\sf \: V = \dfrac{4}{3} \pi {r}^{3} \\ </p><p>According  \: to  \: given \:  question \:  \\ </p><p>\sf \: V = \dfrac{4}{3} \times 3.14 \times {3}^{3} \\ </p><p>\therefore \sf \: V = 113.04 \: {cm}^{3} \:

 \blue \star \: \orange {hope \: this \: helps \: u} \: \blue \star

Similar questions