Math, asked by bfire9457, 8 months ago


A spherical ball is divided into two
equal haves If the curved
surface area of each half
is 56.57 cm², find the volume
of the spherical ball [use π = 3.14]​

Answers

Answered by AmandeepMohanty
3

Answer:

the answer is 113.04cm²

Step-by-step explanation:

CSA of hemisphere = 56.57cm²

2πr² = 56.57cm²

πr² = 28.285cm²

r² = 28.285 / 3.14

r² = 9.00796cm² = 9cm²(approx)

r = √9 cm² = 3cm

volume of spherical ball = 4/3(πr³)

= (4/3)(3.14)(3)³

= (4/3)(3.14)(27)

= (4)(3.14)(9)

= 113.04cm³

Hence, volume of ball is 113.04cm³

Answered by Anonymous
3

\large\underline{\underline{\sf{\maltese\:\: \red{Given :}}}}

• A spherical ball is divided into two equal parts.

• Curved Surface Area (CSA) of each half = 56.57 cm

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\sf{\maltese\:\: \red{To \: Find \: : }}}}

• Volume of the spherical ball = ?

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\sf{\maltese\:\: \red{Concept \: Used \: : }}}}

• Curved Surface Area (CSA) of Sphere = 2πr²

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\sf{\maltese\:\: \red{Solution \: : }}}}

\sf 2\pi r^2  = 56.57cm^2

 \implies 2 \: \times \: 3.14 \: \times \: r^2 = 56.57

\implies r^2 = \frac{56.57 }{2 \: \times 3.14}

 \implies r^2 = 9 \\ \implies r = \sqrt{9}

 \implies r \approx \bold{3 cm}

\\

Volume of Sphere = \frac{4}{3} \pi r^3

Volume of Sphere = \frac {4}{3} \: \times \: 3.14 \: \times \: 3 \: \times \: 3 \: \times \: 3

Volume of Sphere = \bold{113.04 \: cm^3}

\\

∴ Volume of the spherical ball is 113.04 cm³.

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions