Math, asked by suniltty180, 1 year ago

A spherical ball of lead 3 cm is radius is melted and recast into three sperical balls. The radius of two of these are 1.5 cm and 2 cm respectively the radius of third ball

Answers

Answered by Saifßàã
2
hlo FRIEND____^_^

Given that radius of the spherical ball r = 3cm.

We know that volume of the sphere = 4/3pir^3

                                                             = 4/3 * 22/7 * (3)^3

                                                             = 4/3 * 22/7 * 27

                                                             = 4 * 22 * 9/7

                                                             = 792/7 cm^3.

                                                             = 113.1428cm^3

Given radius of the 1st sphere = 1.5cm                     

Volume of the 1st sphere = 4/3 pir^3

                                           = 4/3 * 22/7 * (1.5)^3

                                           = 4/3 * 22/7 * 3.375

                                           = 14.1428cm^3

Given radius of the 2nd sphere = 2cm.

the volume of the 2nd sphere = 4/3 pir^3

                                                   = 4/3 * 22/7 * (2)^3

                                                   = 33.5238cm^3

Volume of the two small spheres = 14.1428 + 33.5238

                                                        = 47.6666cm^3

Volume of the third sphere = 113.1428 - 47.6666

                                              = 65.4762cm^3.

Let the radius of the third be r cm.

4/3pir^3 = 65.4762

4/3 * 22/7 * r^3 = 65.4762

r^3 = 65.4762 * 7/22 * 3/4

      = 65.4762 * 21/88

      = 1375.0002/88

      = 15.62500

r = 2.5cm.

Therefore the radius of the third ball = 2.5cm.

I HOPE ITS HELP U..._____

suniltty180: what is this friend
Answered by mathsdude85
2

Answer:

The diameter of the third ball is 5 cm.

SOLUTION :

Given :  

Let the Radius of the third ball be r3

Radius of the spherical ball , R = 3 cm

Radius of the first ball, r1 = 1.5 cm

Radius of the second ball, r2 = 2 cm

Volume of the spherical ball, V =  4/3πR³

Volume of the spherical ball is equal to the volume of the 3 small spherical balls.

Volume of the spherical ball, V = Volume (V1) of first ball + Volume (V2) of second ball + Volume of third ball (V3)

4/3πR³ = 4/3πr1³ + 4/3πr2³ + 4/3πr3³

4/3πR³ = 4/3π (r1³ + r2³ + r3³)

R³ = (r1³ + r2³ + r3³)

3³ = (1.5³ + 2³ + r3³)

27 = 3.375 + 8 + r3³

27 = 11.375 + r3³

r3³ = 27 - 11.375

r3³ = 15.625

r3 = ³√15.625

r3 = ³√ 2.5 × 2.5 × 2.5

r3 = 2.5 cm

Radius of the third ball = 2.5 cm

Diameter of the third ball = 2 × r3 = 2 × 2.5 = 5 cm

Diameter of the third ball = 5 cm

Hence, the diameter of the third ball is 5 cm.

HOPE THIS ANSWER WILL HELP YOU...

Similar questions