Math, asked by charuvii, 10 months ago

A spherical ball of lead 5 cm in diameter is melted and recast into three spherical balls. The diameters of the two of these balls are 2cm and 2(14.5)^⅓ cm. Find the diameter of the third ball.

Answers

Answered by charry8106
2

Answer:

Radius of first spherical ball = \cfrac {2}{2} = 1  cm=  

2

2

​  

=1 cm

Radius of second spherical ball = \cfrac {2 \sqrt [3] {14.5}}{2} = \sqrt [3] {14.5}  cm=  

2

2  

3

 

14.5

​  

 

​  

=  

3

 

14.5

​  

 cm

Let the radius of the third ball be rr cm.

Radius of the main spherical ball = \cfrac {5}{2}  cm  = 2.5  cm=  

2

5

​  

 cm =2.5 cm

Volume of main spherical bead == Volume of spherical bead  1 +1+Volume of spherical bead 2 +2+ Volume of spherical bead 33  

Volume of a sphere = \cfrac { 4 }{ 3 } \pi { r }^{ 3 }=  

3

4

​  

πr  

3

 

So, \cfrac { 4 }{ 3 } \pi \times { 2.5 }^{ 3 } = \cfrac { 4 }{ 3 } \pi { 1 }^{ 3 } + \cfrac { 4 }{ 3 } \pi { (\sqrt [3] {14.5})  }^{ 3 } + \cfrac { 4 }{ 3 } \pi { r }^{ 3 }  

3

4

​  

π×2.5  

3

=  

3

4

​  

π1  

3

+  

4

 

​  

3π(  

3

 

14.5

​  

)  

3

+  

3

4

​  

πr  

3

 

\Rightarrow  { 2.5 }^{ 3 } = { 1 }^{ 3 } + { (\sqrt [3] {14.5})  }^{ 3 } + { r }^{ 3 }⇒ 2.5  

3

=1  

3

+(  

3

 

14.5

​  

)  

3

+r  

3

 

\Rightarrow { r }^{ 3 } = 15.625 - 1 - 14.5⇒r  

3

=15.625−1−14.5

\Rightarrow { r }^{ 3 } = 0.125 = 0.5 \times 0.5 \times 0.5 ⇒r  

3

=0.125=0.5×0.5×0.5

\Rightarrow r  = 0.5  cm ⇒r =0.5 cm

Hence, the diameter of the third spherical bead is 2 \times 0.5 = 1  cm2×0.5=1 cm.

Step-by-step explanation:

Similar questions