Science, asked by ayrusha4510, 1 year ago

A spherical ball of mass 20kg is stationary at the top of a hill of height 100m. It rolls down a smooth surface to the ground, then climbs up another hill of height 30mand finally rolls down to a horizontal base at a height of 20m above the ground. Find the velocity possessed by the ball at its final position.Given g=9.8m/s.

Answers

Answered by Anonymous
12
\sf{\underline{Here\:we\:should\:use:}}

\boxed{\sf{The\:law\:of\:conservation\:of\:energy.}}

\sf{\underline{Note:}}

\implies I. T. E. = Initial total energy

\implies F. T. E. = Final total energy

\sf{\underline{We\:know\:that:}}

\boxed{\sf{I. T. E.\:of\:block = F. T. E.\:of\:block}}

\sf{\underline{Now:}}

The block is at rest at height 100 m,

\sf{\underline{So\:initially:}} It will have a potential energy component.

\sf{\underline{Let:}}

Initial height = \sf{h_{1} }

Final height = \sf{h_{2} }

Final velocity = \sf{v}

\sf{\underline{We\:know\:that:}}

\boxed{\sf{v = (2gh_{1} - 2gh_{2})^{ \frac{1}{2} }} }

\sf{\underline{Now:}}

By substituting the values,

\implies \sf{\underline{We\:have:}}

\implies \sf{v = (2 \times 9.81 \times 100 - 2 \times 9.81 \times 20) ^{ \frac{1}{2}} }

\implies \sf{v = (1596) \frac{1}{2}}

\implies \sf{v = 39.94 \: m/s}

\implies \boxed{\sf{v = 40 \: m/s^{-1}}}

\sf{\underline{So:}}

The velocity possessed by the ball, at its final position is \sf{40 m/s^{-1}}.
Similar questions