Math, asked by VaishnavaRaj, 10 months ago

a spherical ball of radius 10 cm is cut into 4 equal parts what is the total area of the parts​

Answers

Answered by Anonymous
3

❏ Question:-

A spherical ball of radius 10 cm is cut into 4 equal parts what is the total area of the parts ?

\setlength{\unitlength}{0.8cm}\begin{picture}(10,5)\thicklines\qbezier(1,1)(1,1)(9,1)\end{picture}

❏ Solution:-

FOR The LArge Sphere

\setlength{\unitlength}{1 cm}\begin{picture}(12,6)\thicklines\put(7.5,7.5){\circle{4}}\put(7.5,7.5){\line(1,0){0.70}}\put(4.2,8.5){$.$}\put(7.2,7.6){$10\:cm$}\end{picture}

Volume of the Large Sphere,

\sf\implies V_{\red{Large\: sphere}}=(\frac{4}{3}\pi \times 10^2)\:cm^3

✦ FOR The Small Sphere ✦

\setlength{\unitlength}{0.9cm}\begin{picture}(12,6)\thicklines\put(2,4){\circle{1}}\put(4,4){\circle{1}}\put(6,4){\circle{1}}\put(8,4){\circle{1}}\put(2.14,4.1){$r$}\put(2,4){\line(1,0){0.47}}\put(4.14,4.1){$r$}\put(4,4){\line(1,0){0.47}}\put(6.14,4.1){$r$}\put(6,4){\line(1,0){0.47}}\put(8.14,4.1){$r$}\put(8,4){\line(1,0){0.47}}\end{picture}

Let, the radius of each small sphere is = r cm.

\therefore Volume of each small sphere is

\sf\implies V_{\red{Small\: sphere}}=(\frac{4}{3}\pi \times r^2)\:cm^3

\therefore Volume of 4 such small spheres is

\sf\implies V_{\red{Small\: sphere}}=4\times(\frac{4}{3}\pi \times r^2)\:cm^3

Now, all these 4 spheres are made from the large sphere, so the volume will remain same in this case ,

\therefore (\frac{4}{3}\pi \times 10^2)= 4\times(\frac{4}{3}\pi \times r^2)

\therefore  10^2= 4\times r^2)

\therefore  r^2=\frac{\cancel{100}}{\cancel5}

\therefore  r=\sqrt{25}

\therefore\boxed{\large{\red{r\:=\:5 \:cm}}}

∴ Radius of each small Sphere = 5 cm.

\setlength{\unitlength}{0.8cm}\begin{picture}(10,5)\thicklines\qbezier(1,1)(1,1)(9,1)\end{picture}

,

Similar questions