Math, asked by NNSS32311, 1 year ago

a spherical ball of radius 6 cm is recast into 27 spherical balls of equal radii find the percentage change in the total surface area

Answers

Answered by SuadMalik
0
Given that radius of the spherical ball r = 3cm.
We know that volume of the sphere = 4/3pir^3
                                                             = 4/3 * 22/7 * (3)^3
                                                             = 4/3 * 22/7 * 27
                                                             = 4 * 22 * 9/7
                                                             = 792/7 cm^3.
                                                             = 113.1428

Given radii of the 1st sphere = 1.5cm                     
The volume of the 1st sphere = 4/3 pir^3
                                           = 4/3 * 22/7 * (1.5)^3
                                           = 4/3 * 22/7 * 3.375
                                           = 14.1428.

Given radii of the 2nd sphere = 2cm.
the volume of the 2nd sphere = 4/3 pir^3
                                                   = 4/3 * 22/7 * (2)^3
                                                   = 33.5238.

The volume of the two small spheres = 14.1428 + 33.5238
                                                        = 47.6666.

The volume of the third sphere = 113.1428 - 47.6666
                                              = 65.4762cm^3.

Let the radius of the third be r cm.
4/3pir^3 = 65.4762
4/3 * 22/7 * r^3 = 65.4762
r^3 = 65.4762 * 7/22 * 3/4
      = 65.4762 * 21/88
      = 1375.0002/88
      = 15.62500
r = 2.5cm.

Therefore the radius of the third ball = 2.5cm.
plz mark as brain list

Similar questions