Math, asked by 12ahujagitansh, 7 days ago

A sphérical báll of salt is dissolving in water in such a manner that the ráte of décrease of the volume at any iñstant is propôrtional to the surface. Prove that the radius is decréasing at a coñstant rate.​

Answers

Answered by mathdude500
42

\large\underline{\sf{Solution-}}

Let assume that radius of the spherical ball be r units.

We know,

Volume (V) and Surface Area (S) of sphere of radius r is given by

\boxed{\sf{  \: \: V \:  =  \:  \frac{4}{3} \: \pi \:  {r}^{3} \:  \: }} \\

and

\boxed{\sf{  \: \: S \:  =  \:  4 \: \pi \:  {r}^{2} \:  \: }} \\

Now, According to statement, It is given that

The ráte of décrease of the volume at any iñstant is propôrtional to the surface area.

So,

\rm \: \dfrac{dV}{dt} =  - k \: S

[ - ve sign is because V is decreasing]

where k is constant of proportionality and k > 0.

So, on substituting the values of S and V, we get

\rm \: \dfrac{d}{dt}\bigg(\dfrac{4}{3}\pi \:  {r}^{3}  \bigg)  =  - k \: (4\pi \:  {r}^{2}) \\

\rm \: \dfrac{4}{3}\pi \:  ({3r}^{2})\dfrac{dr}{dt}  =  - k \: (4\pi \:  {r}^{2}) \\

\rm \: 4\pi \:  ({r}^{2})\dfrac{dr}{dt}  =  - k \: (4\pi \:  {r}^{2}) \\

\rm\implies \:\dfrac{dr}{dt} \:  =  -  \: k \:  \\

\rm\implies \:r \: decreases \: with \: constant \: rate. \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by maheshtalpada412
18

Step-by-step explanation:

Spherical ball of radius 'r'.

\sf\dfrac{d V}{d t}=-k A [- ve sign because volume is decreasing]

Where 'V' Is Volume And 'A' Is Surface Area.

 \leadsto\bf V=\dfrac{4}{3} \pi r^{3}, \leadsto A=4 \pi r^{2}

 \leadsto\bf{\dfrac{d V}{d t}=\dfrac{4}{3} \pi \dfrac{d}{d t}\left(r^{3}\right)=\dfrac{4 \pi}{3} 3 r^{2} \dfrac{d r}{d t}=4 \pi r^{2} \dfrac{d r}{d t} }

\[ \begin{aligned} \bf 4 \leadsto\pi r^{2} \dfrac{d r}{d t} & \bf=-k\left(4 \pi r^{2}\right) \\ \leadsto \bf \cfrac{d r}{d t} & \bf=-k \end{aligned} \]

Hence radius is decreasing at a constant rate.

Similar questions