Physics, asked by teena2003, 11 months ago

a spherical ball rolls on a table without slipping determine the percentage of its kinetic energy which is rotational.moment of inertia of sphere2/5×mass×radius^2​

Answers

Answered by sonuvuce
10

Answer:

28.57\%

Explanation:

Let the mass and the radius of the sphere are m and r respectively

Moment of Inertia of the sphere

I=\frac{2}{5}mr^2

Kinetic Energy of the rolling sphere

=\frac{1}{2}mv^2+\frac{1}{2}I\omega^2

=\frac{1}{2}mv^2+\frac{1}{2}\times \frac{2}{5}mr^2\times \omega^2

=\frac{1}{2}mv^2+\frac{1}{2}\times \frac{2}{5}m\times (r\omega)^2

=\frac{1}{2}mv^2+\frac{1}{5}mv^2

=\frac{7}{10}mv^2

Rotational Kinetic energy

=\frac{1}{5}mv^2

\frac{\text{Rotational Kinetic Energy}}{\text{Total Kinetic Energy}}

=\frac{1}{5}mv^2/\frac{7}{10}mv^2

=\frac{2}{7}

Percentage

=\frac{2}{7}\times 100

=28.57\%

Hope this helps.

Answered by mindfulmaisel
2

Answer:

The percentage of rolling ball kinetic energy is 28.57%.

Given Data:

M.I of Sphere =\frac{2}{5} \times \text { mass } \times \text { radius }^{2}.

Explanation:

Step 1:

Total Kinetic energy of rolling sphere =\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}

But moment of inertia of sphere I=\frac{2}{5} m r^{2}

Step 2:

Therefore \mathrm{K.E.}=\frac{1}{2} m v^{2}+\frac{1}{2} \times \frac{2}{5} m r^{2} \times \omega^{2}

K . E .=\frac{1}{2} m v^{2}+\frac{1}{5} m v^{2}

K . E .=\frac{7}{10} m v^{2}

Step 3:

Now, the % of rolling \mathrm{K.E.}=\frac{\frac{1}{5} m v^{2}}{\frac{7}{5} m v^{2}} \times 100

% of rolling K.E =\frac{200}{7}

% of rolling K.E = 28.57%

Similar questions