Physics, asked by vishnuramireddy9938, 1 year ago

A spherical cavity made in a solid sphere of radius r. The mass of sphere before the cavity was eked out was m. The gravitational field intensity at the centre of the sphere due to remaining mass is

Answers

Answered by rithvik301
1

Answer:

Explanation:

\displaystyle \bar{E}_1=\dfrac {p\bar{r}}{3\varepsilon_0}=\dfrac {pR}{6\varepsilon _0}.......\left [ \varepsilon _0=\dfrac {1}{4\pi G} \right ]  

E

ˉ

 

1

​  

=  

3ε  

0

​  

 

p  

r

ˉ

 

​  

=  

6ε  

0

​  

 

pR

​  

.......[ε  

0

​  

=  

4πG

1

​  

]

Gravitational field at mass mm due to cavity (-p)(−p)

\displaystyle \bar{E}_2=\dfrac {(-p)(R/2)^3 \bar{r}}{3\varepsilon _0R^2}.......\left [ using E=\dfrac {pa^3}{3\varepsilon _0r^2} \right]  

E

ˉ

 

2

​  

=  

3ε  

0

​  

R  

2

 

(−p)(R/2)  

3

 

r

ˉ

 

​  

.......[usingE=  

3ε  

0

​  

r  

2

 

pa  

3

 

​  

]

\displaystyle -\dfrac {(-p)R^3}{24\varepsilon _0R^2}=-\dfrac {-pR}{24\varepsilon _0}−  

24ε  

0

​  

R  

2

 

(−p)R  

3

 

​  

=−  

24ε  

0

​  

 

−pR

​  

 

Net gravitational field

\displaystyle \bar{E}=\bar{E}_1+\bar{E}_2=\dfrac {pR}{6\varepsilon _0}-\dfrac{pR}{24\varepsilon _0}=\dfrac {pR}{8\varepsilon _0}  

E

ˉ

=  

E

ˉ

 

1

​  

+  

E

ˉ

 

2

​  

=  

6ε  

0

​  

 

pR

​  

−  

24ε  

0

​  

 

pR

​  

=  

8ε  

0

​  

 

pR

​  

 

Net force on m \rightarrow F=m\bar{E}=\dfrac {mpR}{8\varepsilon _0}m→F=m  

E

ˉ

=  

8ε  

0

​  

 

mpR

​  

 

Here, \displaystyle p=\dfrac {M}{(4/3)\pi R^3}p=  

(4/3)πR  

3

 

M

​  

 & \displaystyle \varepsilon_0=\dfrac {1}{4\pi G}ε  

0  

=  

4πG

1

​  

 

Then, F=\dfrac {3mg}{8}F=  

8

3mg

Similar questions