Physics, asked by StrongGirl, 9 months ago

A spherical mirror forms image of a point object placed principal Axis at a distance 10cm at distance 30 cm from the mirror. if object start moving with velocity 9 cm/sec. find initial velocity of the image
-9cm
-4cm
-1cm
-3cm​

Answers

Answered by EnchantedGirl
37

GIVEN :-

A spherical mirror forms image of a point object placed principal Axis at a distance 10cm at distance 30 cm from the mirror. object starts moving with velocity 9 cm/sec.

TO FIND :-

initial velocity of the image .

SOLUTION:-

V = -10 cm

u = -30 cm

We know ,

 \rightarrow \:  \frac{dy}{dx}  =  \frac{ - v {}^{2} }{u {}^{2} } . \:  \frac{du}{dt}  \\  \\  \\  \implies \:  \frac{dv}{dt}  =  \:  \frac{ - 100}{900} . \frac{du}{dt }  \\  \\  \\  \implies \:  \frac{du}{dt}  = 9 \:  \frac{cm}{s} . \\  \\  \\  \\  \rightarrow \:  \frac{dv}{dt}  =  \frac{ - 1}{9}  \times 9 =  - 1 \\  \\

Hence , Answer is , -1cm/s. Option(C)

______________________________________________

HOPE IT HELPS :)

Answered by TheVenomGirl
7

AnswEr :

  • Initial velocity of the object is -1 cm/s . [Option 3]

GivEn :

  • Image distance (v) = -10 cm

  • Object distance (u) = -30 cm

  • Velocity of the object = 9 cm/sec

To find :

  • Initial velocity of the object = ?

Formula usEd :

Besides lens formula , their are many other formulas to calculate such values!

For the above question we can use differential calculus formulas .

It is given as ,

 \large \dag \: { \boxed{ \sf{ \blue{\dfrac{dy}{dx}  =  \dfrac{ -  {v}^{2} }{ {u}^{2} }  \times  \dfrac{du}{dt} }}}}

SoluTion :

According to the formula,

\sf : \implies \:  \:  \: {\dfrac{dy}{dx}  =  \dfrac{ -  {v}^{2} }{ {u}^{2} }  \times  \dfrac{du}{dt}} \\  \\  \\

\sf : \implies \:  \:  \: {\dfrac{dv}{dt}  =  \dfrac{ -  {v}^{2} }{ {u}^{2} }  \times  \dfrac{du}{dt}} \\  \\  \\

\sf : \implies \:  \:  \: {\dfrac{dv}{dt}  =  \dfrac{ -  {10}^{2} }{ {9}^{2} }  \times  \dfrac{du}{dt}} \\  \\  \\

\sf : \implies \:  \:  \: {\dfrac{dv}{dt}  =  \dfrac{ -  {100} }{ 900 }  \times  \dfrac{du}{dt}} \\  \\  \\

\sf : \implies \:  \:  \: {\dfrac{dv}{dt}  =  \dfrac{ -  {1} }{ 9 }  \times  \dfrac{du}{dt}} \\  \\  \\

\sf : \implies \:  \:  \: {\dfrac{dv}{dt}  =  \dfrac{ -  {1} }{ 9 }  \times  9} \\  \\  \\

\sf : \implies \:  \:  \: {\dfrac{dv}{dt} = - 1} \: cm/s \\  \\  \\

Therefore, initial velocity of the object is -1 cm/s . [Option 3]

Similar questions