Math, asked by Anonymous, 1 month ago

A spherical shell of lead whose external diameter is 18 cm is melted, and the material is used to make a solid right cylinder of height 8 cm and diameter 12 cm. Find the internal diameter of the spherical shell.


ɴᴏᴛᴇ :-

✏ Only for Moderators, Brainly stars and other best users

✏ Spamming is not allowed

Answers

Answered by ItzAshi
318

Step-by-step explanation:

Given :

  • Diameter of external shell = 18 cm
  • Height of cylinder = 8 cm
  • Diameter of cylinder = 12 cm

To find :

  • Internal diameter of external shell

Solution :

Let's assume the internal radius of the shell be r cm

\\ {\bold{\rm{\underline{\red{According  \: to \:  the  \: question : }}}}} \\

{\bold{\sf{⟼ \:  \:  \:  \:  \: Volume_{(material \: of \:  the \:  shell)}  \: =  \: \frac{4π}{3}\Big[\Big({\frac{18}{2}\Big)}^{3} - r³\Big]cm³}}} \\  \\

We know that

{\bold{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }}{\bold{\underline{\boxed{\sf{Volume_{(cylinder)} = πr²h}}}}} \\  \\

{\bold{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}{\bold{\sf{Volume_{(cylinder)}  \: =  \: π{\Big(\frac{12}{2}\Big)}^{2} × 8  \: cm³}}} \\  \\

{\bold{\sf{⟼  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{4π}{3}(9³ \: -  \: r³)  \: =  \: π \:  × \:  6²  \: ×  \: 8}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  9³  \: -  \: r³  \:  \: = \:  \frac{3}{4} \:  ×  \: 6²  \: × \:  8}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  r³ \:  = \:  729  \: -  \: 216 \:  =  \: 513}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  log \:  r³ \:  = \:  log  \: 513}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  3 \:  log  \: r \:  =  \: 2.7101}}} \\  \\

{\bold{\sf{⟼ \:  \:   \:  \: \:  \:  \:  \:  \:  log r  \: = \:  0.9033}}} \\  \\

{\bold{\sf{⟼  \:  \:  \:  \:  \:  \:  \:  \:   \: \: r  \: =  \: antilog (0.9033)}}} \\  \\

{\bold{\sf{⟼  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: r  \: = \:  8.004}}} \\  \\

{\bold{⟼ \:  \:  \:  \: \:  \:  \:  \:  \:  \: }} {\large{\rm{\pink{Internal  \: diameter  \:  \: = \:  \:  16  \: cm  \: (approx.)}}}} \\

Answered by mathdude500
65

\large\underline{\sf{Solution-}}

Given that,

A spherical shell of lead whose external diameter is 18 cm is melted, and the material is used to make a solid right cylinder of height 8 cm and diameter 12 cm.

Case :- 1 Dimensions of Cylinder

Height of cylinder, h = 8 cm

Diameter of cylinder, d = 12 cm

So, Radius of cylinder, r = 6 cm

We know, Volume of cylinder of radius r and height h is

 \red{\boxed{ \sf{ \: Volume_{(cylinder)} = \pi \: {r}^{2} h}}}

So, on substituting the values, we get

 \rm :\longmapsto\: \: Volume_{(cylinder)} = \pi  \times \: {(6)}^{2}  \times 8

 \rm :\longmapsto\: \: Volume_{(cylinder)} = \pi  \times \: 36 \times 8

\bf\implies \: \: Volume_{(cylinder)} = 288\pi \:  {cm}^{3}  -  -  - (1)

Now,

Case :- 2 Dimensions of Spherical shell

External diameter of spherical shell = 18 cm

So, External radius of spherical shell, x = 9 cm

Let assume that internal radius of spherical shell be y.

We know, Volume of spherical shell of external radius x and internal radius y is

 \purple{\boxed{ \sf{ \: Volume_{(spherical \: shell)} = \dfrac{4}{3} \pi \:( {x}^{3} -  {y}^{3})}}}

So, on substituting the values we get

\rm :\longmapsto\:Volume_{(spherical \: shell)} = \dfrac{4}{3} \pi \:( {9}^{3} -  {y}^{3})

\rm :\longmapsto\:Volume_{(spherical \: shell)} = \dfrac{4}{3} \pi \:( 729 -  {y}^{3})

Now, According to statement

A spherical shell of lead whose external diameter is 18 cm is melted, and the material is used to make a solid right cylinder of height 8 cm and diameter 12 cm.

Since, spherical shell is melted and recast in to cylinder.

So,

\bf\implies \:Volume_{(spherical \: shell)} = Volume_{(cylinder )}

\rm :\longmapsto\: \dfrac{4}{3} \pi \:( 729 -  {y}^{3}) = 288\pi

\rm :\longmapsto\: \dfrac{4}{3}  \:( 729 -  {y}^{3}) = 288

\rm :\longmapsto\: \dfrac{1}{3}  \:( 729 -  {y}^{3}) = 72

\rm :\longmapsto\:  729 -  {y}^{3}= 216

\rm :\longmapsto\:  -  {y}^{3}= 216 - 729

\rm :\longmapsto\:  -  {y}^{3}= - 513

\rm :\longmapsto\:  {y}^{3}= 513

\rm :\longmapsto\:  {y}^{3}= 3 \times 3 \times 3 \times 19

\bf\implies \:y = 3 \sqrt[3]{19}

So,

\rm :\longmapsto\:Internal \: diameter \: of \: spherical \: shell \: is

 \rm \:  =  \: 2y

 \rm \:  =  \: 2 \times 3 \sqrt[3]{19}

 \rm \:  =  \: 6 \:  \sqrt[3]{19}  \: cm

Additional Information :-

\boxed{ \sf{ \: Volume_{(cone)} = \dfrac{1}{3} \pi \: {r}^{2} h}}

\boxed{ \sf{ \: Volume_{(cuboid)} = lbh}}

\boxed{ \sf{ \: Volume_{(cube)} = {(edge)}^{3} }}

\boxed{ \sf{ \: CSA{(cuboid)} = 2(l + b) \times h}}

\boxed{ \sf{ \: CSA{(cylinder)} = 2\pi \: rh}}

\boxed{ \sf{ \: CSA{(cube)} = 4 \times {(edge)}^{2} }}

\boxed{ \sf{ \: CSA{(cone)} = \pi \: rl}}

\boxed{ \sf{ \: TSA{(cylinder)} = 2\pi \: r(h + r)}}

\boxed{ \sf{ \: TSA{(cone)} = \pi \: r(l + r)}}

Similar questions